Spaces:
Running
Running
File size: 25,574 Bytes
461c732 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 |
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>Fractal Universe Explorer</title>
<style>
@import url('https://fonts.googleapis.com/css2?family=Montserrat:wght@400;700&family=Ubuntu+Mono&display=swap');
:root {
--primary: #6c5ce7;
--secondary: #0984e3;
--dark: #2d3436;
--light: #dfe6e9;
--accent: #e17055;
}
* {
margin: 0;
padding: 0;
box-sizing: border-box;
}
body {
font-family: 'Montserrat', sans-serif;
background: linear-gradient(135deg, var(--dark), #000);
color: var(--light);
min-height: 100vh;
overflow-x: hidden;
}
.header {
text-align: center;
padding: 2rem;
position: relative;
}
.title {
font-size: 3.5rem;
margin-bottom: 1rem;
background: linear-gradient(to right, var(--primary), var(--secondary));
-webkit-background-clip: text;
background-clip: text;
color: transparent;
text-shadow: 0 0 10px rgba(108, 92, 231, 0.3);
}
.subtitle {
font-size: 1.2rem;
opacity: 0.8;
max-width: 800px;
margin: 0 auto;
line-height: 1.6;
}
.container {
display: flex;
flex-direction: column;
align-items: center;
padding: 2rem;
}
.controls {
display: flex;
flex-wrap: wrap;
gap: 1rem;
justify-content: center;
margin-bottom: 2rem;
width: 100%;
max-width: 900px;
}
.control-group {
display: flex;
flex-direction: column;
min-width: 150px;
}
label {
margin-bottom: 0.5rem;
font-size: 0.9rem;
opacity: 0.8;
}
select, input, button {
padding: 0.8rem 1rem;
border-radius: 8px;
border: 2px solid rgba(255, 255, 255, 0.1);
background: rgba(255, 255, 255, 0.05);
color: var(--light);
font-family: 'Ubuntu Mono', monospace;
transition: all 0.3s ease;
}
select:focus, input:focus, button:focus {
outline: none;
border-color: var(--primary);
box-shadow: 0 0 0 3px rgba(108, 92, 231, 0.3);
}
button {
cursor: pointer;
background: linear-gradient(135deg, var(--primary), var(--secondary));
color: white;
font-weight: bold;
text-transform: uppercase;
letter-spacing: 1px;
border: none;
}
button:hover {
transform: translateY(-2px);
box-shadow: 0 5px 15px rgba(0, 0, 0, 0.3);
}
.canvas-container {
position: relative;
width: 800px;
height: 600px;
margin: 0 auto;
border-radius: 16px;
overflow: hidden;
box-shadow: 0 25px 50px -12px rgba(0, 0, 0, 0.5);
border: 2px solid rgba(255, 255, 255, 0.1);
}
canvas {
width: 100%;
height: 100%;
display: block;
}
.info-panel {
margin-top: 2rem;
max-width: 800px;
padding: 1.5rem;
background: rgba(0, 0, 0, 0.3);
border-radius: 16px;
line-height: 1.6;
}
.fractal-info {
margin-bottom: 1rem;
}
.fractal-title {
font-size: 1.5rem;
margin-bottom: 0.5rem;
color: var(--primary);
}
.fractal-description {
font-size: 0.95rem;
opacity: 0.9;
}
.loading {
position: absolute;
top: 0;
left: 0;
width: 100%;
height: 100%;
display: flex;
justify-content: center;
align-items: center;
background: rgba(0, 0, 0, 0.7);
z-index: 10;
opacity: 0;
pointer-events: none;
transition: opacity 0.3s ease;
}
.loading.active {
opacity: 1;
pointer-events: all;
}
.spinner {
width: 50px;
height: 50px;
border: 5px solid rgba(255, 255, 255, 0.1);
border-radius: 50%;
border-top-color: var(--primary);
animation: spin 1s ease-in-out infinite;
}
@keyframes spin {
to { transform: rotate(360deg); }
}
@media (max-width: 900px) {
.canvas-container {
width: 100%;
height: 500px;
}
}
@media (max-width: 600px) {
.title {
font-size: 2.5rem;
}
.subtitle {
font-size: 1rem;
}
.canvas-container {
height: 400px;
}
}
</style>
</head>
<body>
<div class="header">
<h1 class="title">Fractal Universe Explorer</h1>
<p class="subtitle">Explore the infinite complexity of mathematical fractals. Each fractal is generated in real-time using JavaScript, simulating what you might create with Python.</p>
</div>
<div class="container">
<div class="controls">
<div class="control-group">
<label for="fractal-type">Fractal Type</label>
<select id="fractal-type">
<option value="mandelbrot">Mandelbrot Set</option>
<option value="julia">Julia Set</option>
<option value="burning-ship">Burning Ship</option>
<option value="sierpinski">Sierpinski Triangle</option>
<option value="koch">Koch Snowflake</option>
</select>
</div>
<div class="control-group">
<label for="color-scheme">Color Scheme</label>
<select id="color-scheme">
<option value="rainbow">Rainbow</option>
<option value="fire">Fire</option>
<option value="ocean">Ocean</option>
<option value="monochrome">Monochrome</option>
<option value="pastel">Pastel</option>
</select>
</div>
<div class="control-group">
<label for="iterations">Iterations</label>
<input type="range" id="iterations" min="10" max="200" value="100">
<span id="iterations-value">100</span>
</div>
<div class="control-group">
<label for="zoom">Zoom Level</label>
<input type="range" id="zoom" min="1" max="20" value="1">
<span id="zoom-value">1x</span>
</div>
<button id="generate-btn">Generate Fractal</button>
</div>
<div class="canvas-container">
<canvas id="fractal-canvas"></canvas>
<div class="loading" id="loading">
<div class="spinner"></div>
</div>
</div>
<div class="info-panel">
<div class="fractal-info">
<h3 class="fractal-title">Mandelbrot Set</h3>
<p class="fractal-description" id="fractal-description">
The Mandelbrot set is the set of complex numbers c for which the function f(z) = z² + c does not diverge when iterated from z = 0.
It's one of the most famous fractals, exhibiting infinite complexity at every scale.
</p>
</div>
</div>
</div>
<script>
document.addEventListener('DOMContentLoaded', function() {
// DOM elements
const canvas = document.getElementById('fractal-canvas');
const ctx = canvas.getContext('2d');
const loading = document.getElementById('loading');
const generateBtn = document.getElementById('generate-btn');
const fractalType = document.getElementById('fractal-type');
const colorScheme = document.getElementById('color-scheme');
const iterations = document.getElementById('iterations');
const iterationsValue = document.getElementById('iterations-value');
const zoom = document.getElementById('zoom');
const zoomValue = document.getElementById('zoom-value');
const fractalDescription = document.getElementById('fractal-description');
// Canvas setup
function setupCanvas() {
const dpr = window.devicePixelRatio || 1;
const rect = canvas.getBoundingClientRect();
canvas.width = rect.width * dpr;
canvas.height = rect.height * dpr;
ctx.scale(dpr, dpr);
}
setupCanvas();
window.addEventListener('resize', setupCanvas);
// Update displayed values
iterations.addEventListener('input', function() {
iterationsValue.textContent = this.value;
});
zoom.addEventListener('input', function() {
zoomValue.textContent = `${this.value}x`;
});
// Fractal descriptions
const fractalDescriptions = {
'mandelbrot': 'The Mandelbrot set is the set of complex numbers c for which the function f(z) = z² + c does not diverge when iterated from z = 0. It\'s one of the most famous fractals, exhibiting infinite complexity at every scale.',
'julia': 'Julia sets are mathematically defined shapes that are closely related to the Mandelbrot set. Each Julia set corresponds to a different complex number c, determining the shape and complexity of the fractal pattern.',
'burning-ship': 'The Burning Ship fractal is a variation of the Mandelbrot set that uses a slightly different iteration formula. It reveals ship-like structures that appear to be burning, hence the name.',
'sierpinski': 'The Sierpinski triangle is a fractal that can be created by recursively subdividing an equilateral triangle into smaller equilateral triangles. It demonstrates perfect self-similarity at all scales.',
'koch': 'The Koch snowflake is a fractal constructed by starting with an equilateral triangle, then recursively altering each line segment to add a triangular bump. It has an infinite perimeter but finite area.'
};
// Color palettes
const palettes = {
'rainbow': (t) => {
const r = Math.floor((1 - t) * 255);
const g = Math.floor((Math.sin(t * Math.PI * 2) * 0.5 + 0.5) * 255);
const b = Math.floor(t * 255);
return `rgb(${r}, ${g}, ${b})`;
},
'fire': (t) => {
const r = 255;
const g = Math.floor(t * 128 + 127);
const b = Math.floor(t * 50);
return `rgb(${r}, ${g}, ${b})`;
},
'ocean': (t) => {
const r = 0;
const g = Math.floor(t * 100 + 50);
const b = Math.floor(t * 200 + 55);
return `rgb(${r}, ${g}, ${b})`;
},
'monochrome': (t) => {
const c = Math.floor(t * 255);
return `rgb(${c}, ${c}, ${c})`;
},
'pastel': (t) => {
const r = Math.floor((1 - t) * 200);
const g = Math.floor((t * 0.5 + 0.5) * 200);
const b = Math.floor((Math.sin(t * Math.PI) + 1) * 100);
return `rgb(${r}, ${g}, ${b})`;
}
};
// Generate fractal
function generateFractal() {
loading.classList.add('active');
// Get selected values
const type = fractalType.value;
const palette = palettes[colorScheme.value];
const maxIter = parseInt(iterations.value);
const zoomLevel = parseInt(zoom.value);
// Update description
document.querySelector('.fractal-title').textContent =
fractalType.options[fractalType.selectedIndex].text;
fractalDescription.textContent = fractalDescriptions[type];
// Clear and prepare canvas
const width = canvas.width;
const height = canvas.height;
// Use setTimeout to prevent UI freeze during heavy computation
setTimeout(() => {
// Draw selected fractal
switch(type) {
case 'mandelbrot':
drawMandelbrot(width, height, palette, maxIter, zoomLevel);
break;
case 'julia':
drawJulia(width, height, palette, maxIter, zoomLevel);
break;
case 'burning-ship':
drawBurningShip(width, height, palette, maxIter, zoomLevel);
break;
case 'sierpinski':
drawSierpinski(width, height, palette, maxIter);
break;
case 'koch':
drawKochSnowflake(width, height, palette, Math.floor(maxIter/15));
break;
}
loading.classList.remove('active');
}, 100);
}
// Mandelbrot set
function drawMandelbrot(width, height, palette, maxIter, zoomLevel) {
const zoomFactor = Math.pow(2, zoomLevel);
const centerX = -0.5;
const centerY = 0;
const scale = 2 / (Math.min(width, height) / 2) / zoomFactor;
const imageData = ctx.createImageData(width, height);
const data = imageData.data;
for (let px = 0; px < width; px++) {
for (let py = 0; py < height; py++) {
// Convert pixel coordinates to complex plane
const x0 = (px - width/2) * scale + centerX;
const y0 = (py - height/2) * scale + centerY;
let x = 0;
let y = 0;
let iter = 0;
// Iterate until escape or max iterations
while (x*x + y*y <= 4 && iter < maxIter) {
const x_new = x*x - y*y + x0;
y = 2*x*y + y0;
x = x_new;
iter++;
}
// Color based on iterations
const color = palette(iter/maxIter);
const [r, g, b] = color.match(/\d+/g);
const idx = (px + py * width) * 4;
// Set pixel color
if (iter === maxIter) {
// Inside the set (black)
data[idx] = 0;
data[idx+1] = 0;
data[idx+2] = 0;
} else {
// Outside (colored by iterations)
data[idx] = r;
data[idx+1] = g;
data[idx+2] = b;
}
data[idx+3] = 255; // Alpha
}
}
ctx.putImageData(imageData, 0, 0);
}
// Julia set (similar to Mandelbrot but with fixed c)
function drawJulia(width, height, palette, maxIter, zoomLevel) {
const zoomFactor = Math.pow(2, zoomLevel);
const centerX = 0;
const centerY = 0;
const scale = 2.5 / (Math.min(width, height) / 2) / zoomFactor;
// Julia parameters (can be randomized)
const cRe = -0.7;
const cIm = 0.27;
const imageData = ctx.createImageData(width, height);
const data = imageData.data;
for (let px = 0; px < width; px++) {
for (let py = 0; py < height; py++) {
const zx = (px - width/2) * scale + centerX;
const zy = (py - height/2) * scale + centerY;
let x = zx;
let y = zy;
let iter = 0;
while (x*x + y*y <= 4 && iter < maxIter) {
const x_new = x*x - y*y + cRe;
y = 2*x*y + cIm;
x = x_new;
iter++;
}
const color = palette(iter/maxIter);
const [r, g, b] = color.match(/\d+/g);
const idx = (px + py * width) * 4;
data[idx] = (iter === maxIter) ? 0 : r;
data[idx+1] = (iter === maxIter) ? 0 : g;
data[idx+2] = (iter === maxIter) ? 0 : b;
data[idx+3] = 255;
}
}
ctx.putImageData(imageData, 0, 0);
}
// Burning Ship fractal
function drawBurningShip(width, height, palette, maxIter, zoomLevel) {
const zoomFactor = Math.pow(2, zoomLevel);
const centerX = -0.5;
const centerY = -0.5;
const scale = 2.8 / (Math.min(width, height) / 2) / zoomFactor;
const imageData = ctx.createImageData(width, height);
const data = imageData.data;
for (let px = 0; px < width; px++) {
for (let py = 0; py < height; py++) {
const x0 = (px - width/2) * scale + centerX;
const y0 = (py - height/2) * scale + centerY;
let x = 0;
let y = 0;
let iter = 0;
while (x*x + y*y <= 4 && iter < maxIter) {
const x_new = x*x - y*y + x0;
y = Math.abs(2*x*y) + y0;
x = Math.abs(x_new);
iter++;
}
const color = palette(iter/maxIter);
const [r, g, b] = color.match(/\d+/g);
const idx = (px + py * width) * 4;
data[idx] = (iter === maxIter) ? 0 : r;
data[idx+1] = (iter === maxIter) ? 0 : g;
data[idx+2] = (iter === maxIter) ? 0 : b;
data[idx+3] = 255;
}
}
ctx.putImageData(imageData, 0, 0);
}
// Sierpinski Triangle (geometric fractal)
function drawSierpinski(width, height, palette, maxIter) {
ctx.fillStyle = 'black';
ctx.fillRect(0, 0, width, height);
const size = Math.min(width, height) * 0.9;
const marginX = (width - size) / 2;
const marginY = (height - size) / 2;
// Starting points (triangle)
let points = [
{x: marginX + size/2, y: marginY},
{x: marginX, y: marginY + size},
{x: marginX + size, y: marginY + size}
];
// Random starting point
let px = Math.random() * width;
let py = Math.random() * height;
// Draw many iterations
for (let i = 0; i < maxIter * 300; i++) {
// Choose a random corner
const corner = Math.floor(Math.random() * 3);
// Move halfway toward that corner
px = (px + points[corner].x) / 2;
py = (py + points[corner].y) / 2;
// Draw point
ctx.fillStyle = palette(i/(maxIter*300));
ctx.fillRect(px, py, 1, 1);
}
}
// Koch Snowflake (recursive fractal)
function drawKochSnowflake(width, height, palette, depth) {
ctx.fillStyle = 'black';
ctx.fillRect(0, 0, width, height);
const size = Math.min(width, height) * 0.7;
const centerX = width / 2;
const centerY = height / 2;
// Starting equilateral triangle
let points = [
{x: centerX, y: centerY - size/2},
{x: centerX - size/2, y: centerY + size/2},
{x: centerX + size/2, y: centerY + size/2}
];
// Draw the snowflake
ctx.strokeStyle = palette(1.0);
ctx.lineWidth = 1;
function koch(p1, p2, level) {
if (level === 0) {
ctx.beginPath();
ctx.moveTo(p1.x, p1.y);
ctx.lineTo(p2.x, p2.y);
ctx.strokeStyle = palette(1 - level/depth);
ctx.stroke();
} else {
const dx = p2.x - p1.x;
const dy = p2.y - p1.y;
// Calculate intermediate points
const a = {
x: p1.x + dx / 3,
y: p1.y + dy / 3
};
const b = {
x: p1.x + dx / 2 - dy * Math.sqrt(3)/6,
y: p1.y + dy / 2 + dx * Math.sqrt(3)/6
};
const c = {
x: p1.x + 2*dx/3,
y: p1.y + 2*dy/3
};
// Recursively draw the 4 segments
koch(p1, a, level - 1);
koch(a, b, level - 1);
koch(b, c, level - 1);
koch(c, p2, level - 1);
}
}
// Draw the three initial sides
koch(points[0], points[1], depth);
koch(points[1], points[2], depth);
koch(points[2], points[0], depth);
}
// Events
generateBtn.addEventListener('click', generateFractal);
fractalType.addEventListener('change', function() {
document.querySelector('.fractal-title').textContent =
this.options[this.selectedIndex].text;
fractalDescription.textContent = fractalDescriptions[this.value];
});
// Generate initial fractal
generateFractal();
});
</script>
<p style="border-radius: 8px; text-align: center; font-size: 12px; color: #fff; margin-top: 16px;position: fixed; left: 8px; bottom: 8px; z-index: 10; background: rgba(0, 0, 0, 0.8); padding: 4px 8px;">Made with <a href="https://enzostvs-deepsite.hf.space" style="color: #fff;" target="_blank" >DeepSite</a> <img src="https://enzostvs-deepsite.hf.space/logo.svg" alt="DeepSite Logo" style="width: 16px; height: 16px; vertical-align: middle;"></p></body>
</html> |