File size: 3,859 Bytes
3c4d877
 
 
 
 
 
 
 
 
 
 
934e107
3c4d877
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1db9a6e
 
3c4d877
 
 
 
 
1db9a6e
 
 
 
ca99111
 
 
 
 
 
 
 
 
3c4d877
 
 
 
 
 
 
 
 
1db9a6e
 
3c4d877
 
 
 
 
 
 
 
 
 
 
1db9a6e
3c4d877
 
1db9a6e
ca99111
3c4d877
 
 
1db9a6e
 
 
 
3c4d877
 
1db9a6e
 
890a9f7
1db9a6e
c496c70
 
 
 
2765643
c496c70
890a9f7
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
import streamlit as st
import gradio as gr
import cv2
import numpy as np
from tensorflow.keras.models import load_model
from tensorflow.keras.applications.vgg16 import preprocess_input
from tensorflow.keras.preprocessing import image
from werkzeug.utils import secure_filename
import os

# Loading Models
braintumor_model = load_model('models/brain_tumor_binary.h5')

# Configuring Streamlit
UPLOAD_FOLDER = 'static/uploads'
ALLOWED_EXTENSIONS = {'png', 'jpg', 'jpeg'}
st.set_page_config(page_title="Brain Tumor Prediction App", page_icon=":brain:")

def allowed_file(filename):
    return '.' in filename and filename.rsplit('.', 1)[1].lower() in ALLOWED_EXTENSIONS

def preprocess_imgs(set_name, img_size):
    set_new = []
    for img in set_name:
        img = cv2.resize(img, dsize=img_size, interpolation=cv2.INTER_CUBIC)
        set_new.append(preprocess_input(img))
    return np.array(set_new)

def crop_imgs(set_name, add_pixels_value=0):
    set_new = []
    for img in set_name:
        gray = cv2.GaussianBlur(img, (5, 5), 0)
        thresh = cv2.threshold(gray, 45, 255, cv2.THRESH_BINARY)[1]
        thresh = cv2.erode(thresh, None, iterations=2)
        thresh = cv2.dilate(thresh, None, iterations=2)
        cnts = cv2.findContours(thresh.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
        cnts = cnts[0] if len(cnts) == 2 else cnts[1]
        c = max(cnts, key=cv2.contourArea)
        extLeft = tuple(c[c[:, :, 0].argmin()][0])
        extRight = tuple(c[c[:, :, 0].argmax()][0])
        extTop = tuple(c[c[:, :, 1].argmin()][0])
        extBot = tuple(c[c[:, :, 1].argmax()][0])
        ADD_PIXELS = add_pixels_value
        new_img = img[extTop[1] - ADD_PIXELS:extBot[1] + ADD_PIXELS,
                      extLeft[0] - ADD_PIXELS:extRight[0] + ADD_PIXELS].copy()
        set_new.append(new_img)
    return np.array(set_new)

# Function to preprocess the image
def preprocess_image(file_path):
    img = image.load_img(file_path, target_size=(200, 200))
    img_array = image.img_to_array(img)
    img_array = np.expand_dims(img_array, axis=0)
    img_array /= 255.0  # Normalize the image
    return img_array

# Handle binary decision
def binary_decision(confidence):
    return 1 if confidence >= 0.5 else 0

def predict_braintumor(file_contents):
    # Save the uploaded file
    filename = "temp_image.png"
    file_path = os.path.join(UPLOAD_FOLDER, filename)

    with open(file_path, "wb") as f:
        f.write(file_contents)

    img_gray = cv2.imread(file_path, cv2.IMREAD_GRAYSCALE)

    # Crop and preprocess the grayscale image
    img_processed = crop_imgs([img_gray])
    img_processed = preprocess_imgs(img_processed, (224, 224))

    # Make prediction
    pred = braintumor_model.predict(img_processed)

    # Handle binary decision
    confidence = pred[0][0]
    return binary_decision(confidence)

def main():
    st.title("Brain Tumor Prediction App")

    uploaded_file = st.file_uploader("Choose an image...", type=["png", "jpg", "jpeg"])

    if uploaded_file is not None:
        st.image(uploaded_file, caption="Uploaded Image.", use_column_width=True)
        st.write("")
        st.write("Classifying...")

        # Read the contents of the uploaded file
        file_contents = uploaded_file.read()

        # Make prediction
        result = predict_braintumor(file_contents)

        # Display prediction
        st.subheader("Prediction:")
        if result == 1:
            st.success("Brain Tumor Found!")
        else:
            st.success("Brain Tumor Not Found!")

if __name__ == "__main__":
    # Streamlit app
    main()

    # Gradio interface
    iface = gr.Interface(
        fn=predict_braintumor,
        inputs="image",
        outputs="text",
        examples=[["examples/1_no.jpeg"], ["examples/2_no.jpeg"], ["examples/Y1.jpg"], ["examples/Y2.jpg"]]
    )
    iface.launch()