File size: 16,087 Bytes
d4a8a38
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
import torch
import torch.nn as nn
import torch.nn.functional as F
import math
from typing import Any, Dict, Optional, Tuple, Union
from diffusers.utils import USE_PEFT_BACKEND, is_torch_version, logging, scale_lora_layers, unscale_lora_layers
from diffusers.models.modeling_outputs import Transformer2DModelOutput

logger = logging.get_logger(__name__)  # pylint: disable=invalid-name

@torch.no_grad()
def decode_latents(pipe, latents):
    has_latents_mean = hasattr(pipe.vae.config, "latents_mean") and pipe.vae.config.latents_mean is not None
    has_latents_std = hasattr(pipe.vae.config, "latents_std") and pipe.vae.config.latents_std is not None
    if has_latents_mean and has_latents_std:
        latents_mean = (
            torch.tensor(pipe.vae.config.latents_mean).view(1, 12, 1, 1, 1).to(latents.device, latents.dtype)
        )
        latents_std = (
            torch.tensor(pipe.vae.config.latents_std).view(1, 12, 1, 1, 1).to(latents.device, latents.dtype)
        )
        latents = latents * latents_std / pipe.vae.config.scaling_factor + latents_mean
    else:
        latents = latents / pipe.vae.config.scaling_factor

    video = pipe.vae.decode(latents, return_dict=False)[0]
    video = pipe.video_processor.postprocess_video(video, output_type='np')

    return video


class RGBALoRAMochiAttnProcessor:
    """Attention processor used in Mochi."""
    def __init__(self, device, dtype, lora_rank=128, lora_alpha=1.0, latent_dim=3072):
        if not hasattr(F, "scaled_dot_product_attention"):
            raise ImportError("MochiAttnProcessor2_0 requires PyTorch 2.0. To use it, please upgrade PyTorch to 2.0.")

        
        # Initialize LoRA layers
        self.lora_alpha = lora_alpha
        self.lora_rank = lora_rank

        # Helper function to create LoRA layers
        def create_lora_layer(in_dim, mid_dim, out_dim, device=device, dtype=dtype):
            # Define the LoRA layers
            lora_a = nn.Linear(in_dim, mid_dim, bias=False, device=device, dtype=dtype)
            lora_b = nn.Linear(mid_dim, out_dim, bias=False, device=device, dtype=dtype)
            
            # Initialize lora_a with random parameters (default initialization)
            nn.init.kaiming_uniform_(lora_a.weight, a=math.sqrt(5))  # or another suitable initialization
            
            # Initialize lora_b with zero values
            nn.init.zeros_(lora_b.weight)

            lora_a.weight.requires_grad = True
            lora_b.weight.requires_grad = True
            
            # Combine the layers into a sequential module
            return nn.Sequential(lora_a, lora_b)

        self.to_q_lora = create_lora_layer(latent_dim, lora_rank, latent_dim)
        self.to_k_lora = create_lora_layer(latent_dim, lora_rank, latent_dim)
        self.to_v_lora = create_lora_layer(latent_dim, lora_rank, latent_dim)
        self.to_out_lora = create_lora_layer(latent_dim, lora_rank, latent_dim)

    def _apply_lora(self, hidden_states, seq_len, query, key, value, scaling):
        """Applies LoRA updates to query, key, and value tensors."""
        query_delta = self.to_q_lora(hidden_states).to(query.device)
        query[:, -seq_len // 2:, :] += query_delta[:, -seq_len // 2:, :] * scaling

        key_delta = self.to_k_lora(hidden_states).to(key.device)
        key[:, -seq_len // 2:, :] += key_delta[:, -seq_len // 2:, :] * scaling

        value_delta = self.to_v_lora(hidden_states).to(value.device)
        value[:, -seq_len // 2:, :] += value_delta[:, -seq_len // 2:, :] * scaling

        return query, key, value

    def __call__(

        self,

        attn,

        hidden_states: torch.Tensor,

        encoder_hidden_states: torch.Tensor,

        attention_mask: Optional[torch.Tensor] = None,

        image_rotary_emb: Optional[torch.Tensor] = None,

    ) -> torch.Tensor:
        query = attn.to_q(hidden_states)
        key = attn.to_k(hidden_states)
        value = attn.to_v(hidden_states)

        scaling = self.lora_alpha / self.lora_rank
        sequence_length = query.size(1)
        query, key, value = self._apply_lora(hidden_states, sequence_length, query, key, value, scaling)

        query = query.unflatten(2, (attn.heads, -1))
        key = key.unflatten(2, (attn.heads, -1))
        value = value.unflatten(2, (attn.heads, -1))

        if attn.norm_q is not None:
            query = attn.norm_q(query)
        if attn.norm_k is not None:
            key = attn.norm_k(key)

        encoder_query = attn.add_q_proj(encoder_hidden_states)
        encoder_key = attn.add_k_proj(encoder_hidden_states)
        encoder_value = attn.add_v_proj(encoder_hidden_states)

        encoder_query = encoder_query.unflatten(2, (attn.heads, -1))
        encoder_key = encoder_key.unflatten(2, (attn.heads, -1))
        encoder_value = encoder_value.unflatten(2, (attn.heads, -1))

        if attn.norm_added_q is not None:
            encoder_query = attn.norm_added_q(encoder_query)
        if attn.norm_added_k is not None:
            encoder_key = attn.norm_added_k(encoder_key)

        if image_rotary_emb is not None:

            def apply_rotary_emb(x, freqs_cos, freqs_sin):
                x_even = x[..., 0::2].float()
                x_odd = x[..., 1::2].float()

                cos = (x_even * freqs_cos - x_odd * freqs_sin).to(x.dtype)
                sin = (x_even * freqs_sin + x_odd * freqs_cos).to(x.dtype)

                return torch.stack([cos, sin], dim=-1).flatten(-2)

            query[:,sequence_length//2:] = apply_rotary_emb(query[:,sequence_length//2:], *image_rotary_emb)
            query[:,:sequence_length//2] = apply_rotary_emb(query[:,:sequence_length//2], *image_rotary_emb)

            key[:,sequence_length//2:] = apply_rotary_emb(key[:,sequence_length//2:], *image_rotary_emb)
            key[:,:sequence_length//2] = apply_rotary_emb(key[:,:sequence_length//2], *image_rotary_emb)
            # query = apply_rotary_emb(query, *image_rotary_emb)
            # key = apply_rotary_emb(key, *image_rotary_emb)
            

        query, key, value = query.transpose(1, 2), key.transpose(1, 2), value.transpose(1, 2)
        encoder_query, encoder_key, encoder_value = (
            encoder_query.transpose(1, 2),
            encoder_key.transpose(1, 2),
            encoder_value.transpose(1, 2),
        )

        sequence_length = query.size(2)
        encoder_sequence_length = encoder_query.size(2)
        total_length = sequence_length + encoder_sequence_length

        batch_size, heads, _, dim = query.shape
        
        attn_outputs = []
        prompt_attention_mask = attention_mask["prompt_attention_mask"]
        rect_attention_mask = attention_mask["rect_attention_mask"]
        for idx in range(batch_size):
            mask = prompt_attention_mask[idx][None, :] # two components: attention mask and prompt mask
            valid_prompt_token_indices = torch.nonzero(mask.flatten(), as_tuple=False).flatten()

            valid_encoder_query = encoder_query[idx : idx + 1, :, valid_prompt_token_indices, :]
            valid_encoder_key = encoder_key[idx : idx + 1, :, valid_prompt_token_indices, :]
            valid_encoder_value = encoder_value[idx : idx + 1, :, valid_prompt_token_indices, :]

            valid_query = torch.cat([query[idx : idx + 1], valid_encoder_query], dim=2)
            valid_key = torch.cat([key[idx : idx + 1], valid_encoder_key], dim=2)
            valid_value = torch.cat([value[idx : idx + 1], valid_encoder_value], dim=2)

            attn_output = F.scaled_dot_product_attention(
                valid_query, 
                valid_key, 
                valid_value, 
                dropout_p=0.0,
                attn_mask=rect_attention_mask[idx], 
                is_causal=False
            )
            valid_sequence_length = attn_output.size(2)
            attn_output = F.pad(attn_output, (0, 0, 0, total_length - valid_sequence_length))
            attn_outputs.append(attn_output)

        hidden_states = torch.cat(attn_outputs, dim=0)
        hidden_states = hidden_states.transpose(1, 2).flatten(2, 3)

        hidden_states, encoder_hidden_states = hidden_states.split_with_sizes(
            (sequence_length, encoder_sequence_length), dim=1
        )

        # linear proj
        original_hidden_states = attn.to_out[0](hidden_states)
        hidden_states_delta = self.to_out_lora(hidden_states).to(hidden_states.device)
        original_hidden_states[:, -sequence_length // 2:, :] += hidden_states_delta[:, -sequence_length // 2:, :] * scaling
        # dropout
        hidden_states = attn.to_out[1](original_hidden_states)

        if hasattr(attn, "to_add_out"):
            encoder_hidden_states = attn.to_add_out(encoder_hidden_states)

        return hidden_states, encoder_hidden_states

def prepare_for_rgba_inference(

    model, device: torch.device, dtype: torch.dtype,

    lora_rank: int = 128, lora_alpha: float = 1.0

):

    def custom_forward(self):
        def forward(

            hidden_states: torch.Tensor,

            encoder_hidden_states: torch.Tensor,

            timestep: torch.LongTensor,

            encoder_attention_mask: torch.Tensor,

            attention_kwargs: Optional[Dict[str, Any]] = None,

            return_dict: bool = True,

        ) -> torch.Tensor:
            if attention_kwargs is not None:
                attention_kwargs = attention_kwargs.copy()
                lora_scale = attention_kwargs.pop("scale", 1.0)
            else:
                lora_scale = 1.0

            if USE_PEFT_BACKEND:
                # weight the lora layers by setting `lora_scale` for each PEFT layer
                scale_lora_layers(self, lora_scale)
            else:
                if attention_kwargs is not None and attention_kwargs.get("scale", None) is not None:
                    logger.warning(
                        "Passing `scale` via `attention_kwargs` when not using the PEFT backend is ineffective."
                    )

            batch_size, num_channels, num_frames, height, width = hidden_states.shape
            p = self.config.patch_size

            post_patch_height = height // p
            post_patch_width = width // p

            temb, encoder_hidden_states = self.time_embed(
                timestep,
                encoder_hidden_states,
                encoder_attention_mask["prompt_attention_mask"],
                hidden_dtype=hidden_states.dtype,
            )

            hidden_states = hidden_states.permute(0, 2, 1, 3, 4).flatten(0, 1)
            hidden_states = self.patch_embed(hidden_states)
            hidden_states = hidden_states.unflatten(0, (batch_size, -1)).flatten(1, 2)

            image_rotary_emb = self.rope(
                self.pos_frequencies,
                num_frames // 2, # Identitical PE for RGB and Alpha
                post_patch_height,
                post_patch_width,
                device=hidden_states.device,
                dtype=torch.float32,
            )

            for i, block in enumerate(self.transformer_blocks):
                if torch.is_grad_enabled() and self.gradient_checkpointing:

                    def create_custom_forward(module):
                        def custom_forward(*inputs):
                            return module(*inputs)

                        return custom_forward

                    ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
                    hidden_states, encoder_hidden_states = torch.utils.checkpoint.checkpoint(
                        create_custom_forward(block),
                        hidden_states,
                        encoder_hidden_states,
                        temb,
                        encoder_attention_mask,
                        image_rotary_emb,
                        **ckpt_kwargs,
                    )
                else:
                    hidden_states, encoder_hidden_states = block(
                        hidden_states=hidden_states,
                        encoder_hidden_states=encoder_hidden_states,
                        temb=temb,
                        encoder_attention_mask=encoder_attention_mask,
                        image_rotary_emb=image_rotary_emb,
                    )
            hidden_states = self.norm_out(hidden_states, temb)
            hidden_states = self.proj_out(hidden_states)

            hidden_states = hidden_states.reshape(batch_size, num_frames, post_patch_height, post_patch_width, p, p, -1)
            hidden_states = hidden_states.permute(0, 6, 1, 2, 4, 3, 5)
            output = hidden_states.reshape(batch_size, -1, num_frames, height, width)

            if USE_PEFT_BACKEND:
                # remove `lora_scale` from each PEFT layer
                unscale_lora_layers(self, lora_scale)

            if not return_dict:
                return (output,)
            return Transformer2DModelOutput(sample=output)
        return forward
    
    for _, block in enumerate(model.transformer_blocks):
        attn_processor = RGBALoRAMochiAttnProcessor(
            device=device, 
            dtype=dtype,
            lora_rank=lora_rank, 
            lora_alpha=lora_alpha
        )
        # block.attn1.set_processor(attn_processor)
        block.attn1.processor = attn_processor

    model.forward = custom_forward(model)

def get_processor_state_dict(model):
    """Save trainable parameters of processors to a checkpoint."""
    processor_state_dict = {}

    for index, block in enumerate(model.transformer_blocks):
        if hasattr(block.attn1, "processor"):
            processor = block.attn1.processor
            for attr_name in ["to_q_lora", "to_k_lora", "to_v_lora", "to_out_lora"]:
                if hasattr(processor, attr_name):
                    lora_layer = getattr(processor, attr_name)
                    for param_name, param in lora_layer.named_parameters():
                        key = f"block_{index}.{attr_name}.{param_name}"
                        processor_state_dict[key] = param.data.clone()

    # torch.save({"processor_state_dict": processor_state_dict}, checkpoint_path)
    # print(f"Processor state_dict saved to {checkpoint_path}")
    return processor_state_dict

def load_processor_state_dict(model, processor_state_dict):
    """Load trainable parameters of processors from a checkpoint."""
    for index, block in enumerate(model.transformer_blocks):
        if hasattr(block.attn1, "processor"):
            processor = block.attn1.processor
            for attr_name in ["to_q_lora", "to_k_lora", "to_v_lora", "to_out_lora"]:
                if hasattr(processor, attr_name):
                    lora_layer = getattr(processor, attr_name)
                    for param_name, param in lora_layer.named_parameters():
                        key = f"block_{index}.{attr_name}.{param_name}"
                        if key in processor_state_dict:
                            param.data.copy_(processor_state_dict[key])
                        else:
                            raise KeyError(f"Missing key {key} in checkpoint.")

# Prepare training parameters
def get_processor_params(processor):
    params = []
    for attr_name in ["to_q_lora", "to_k_lora", "to_v_lora", "to_out_lora"]:
        if hasattr(processor, attr_name):
            lora_layer = getattr(processor, attr_name)
            params.extend(p for p in lora_layer.parameters() if p.requires_grad)
    return params

def get_all_processor_params(transformer):
    all_params = []
    for block in transformer.transformer_blocks:
        if hasattr(block.attn1, "processor"):
            processor = block.attn1.processor
            all_params.extend(get_processor_params(processor))
    return all_params