Spaces:
Runtime error
Runtime error
| # ✅ src/video_utils.py(返回 <image> prefix 支持多轮对话) | |
| import numpy as np | |
| import torch | |
| from PIL import Image | |
| from decord import VideoReader, cpu | |
| import torchvision.transforms as T | |
| from torchvision.transforms.functional import InterpolationMode | |
| IMAGENET_MEAN = (0.485, 0.456, 0.406) | |
| IMAGENET_STD = (0.229, 0.224, 0.225) | |
| # 图像预处理 transform | |
| def build_transform(input_size=448): | |
| return T.Compose([ | |
| T.Lambda(lambda img: img.convert('RGB') if img.mode != 'RGB' else img), | |
| T.Resize((input_size, input_size), interpolation=InterpolationMode.BICUBIC), | |
| T.ToTensor(), | |
| T.Normalize(mean=IMAGENET_MEAN, std=IMAGENET_STD) | |
| ]) | |
| # 视频帧采样策略 | |
| def get_frame_indices(num_frames, total_frames): | |
| indices = np.linspace(0, total_frames - 1, num_frames, dtype=int) | |
| return indices | |
| # 构建 <image> token 的前缀信息 | |
| def build_image_prefix(num_frames: int) -> str: | |
| return ''.join([f"Frame{i+1}: <image>\n" for i in range(num_frames)]) | |
| # 视频处理为 patch tensor,并返回 <image> 前缀 | |
| def process_video_for_internvl3(video_path, num_segments=8, max_patch_per_frame=1, input_size=448): | |
| vr = VideoReader(video_path, ctx=cpu(0)) | |
| total_frames = len(vr) | |
| frame_indices = get_frame_indices(num_segments, total_frames) | |
| transform = build_transform(input_size) | |
| pixel_values_list, num_patches_list = [], [] | |
| for idx in frame_indices: | |
| img = Image.fromarray(vr[idx].asnumpy()).convert("RGB") | |
| patches = dynamic_preprocess(img, image_size=input_size, max_num=max_patch_per_frame) | |
| patch_tensors = [transform(tile) for tile in patches] | |
| patch_tensor = torch.stack(patch_tensors) | |
| pixel_values_list.append(patch_tensor) | |
| num_patches_list.append(patch_tensor.shape[0]) | |
| pixel_values = torch.cat(pixel_values_list, dim=0).to(torch.bfloat16).cuda() | |
| image_prefix = build_image_prefix(len(num_patches_list)) | |
| return pixel_values, num_patches_list, image_prefix | |
| # 图像切块 | |
| def dynamic_preprocess(image, min_num=1, max_num=12, image_size=448, use_thumbnail=True): | |
| orig_width, orig_height = image.size | |
| aspect_ratio = orig_width / orig_height | |
| target_ratios = set( | |
| (i, j) for n in range(min_num, max_num + 1) for i in range(1, n + 1) for j in range(1, n + 1) | |
| if i * j <= max_num and i * j >= min_num | |
| ) | |
| target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1]) | |
| best_ratio = find_closest_aspect_ratio(aspect_ratio, target_ratios, orig_width, orig_height, image_size) | |
| target_width = image_size * best_ratio[0] | |
| target_height = image_size * best_ratio[1] | |
| blocks = best_ratio[0] * best_ratio[1] | |
| resized_img = image.resize((target_width, target_height)) | |
| processed_images = [] | |
| for i in range(blocks): | |
| box = ( | |
| (i % (target_width // image_size)) * image_size, | |
| (i // (target_width // image_size)) * image_size, | |
| ((i % (target_width // image_size)) + 1) * image_size, | |
| ((i // (target_width // image_size)) + 1) * image_size | |
| ) | |
| split_img = resized_img.crop(box) | |
| processed_images.append(split_img) | |
| if use_thumbnail and len(processed_images) != 1: | |
| thumbnail_img = image.resize((image_size, image_size)) | |
| processed_images.append(thumbnail_img) | |
| return processed_images | |
| # 找最接近原图比例的切块方案 | |
| def find_closest_aspect_ratio(aspect_ratio, target_ratios, width, height, image_size): | |
| best_ratio_diff = float('inf') | |
| best_ratio = (1, 1) | |
| area = width * height | |
| for ratio in target_ratios: | |
| target_aspect = ratio[0] / ratio[1] | |
| diff = abs(aspect_ratio - target_aspect) | |
| if diff < best_ratio_diff or (diff == best_ratio_diff and area > 0.5 * image_size**2 * ratio[0] * ratio[1]): | |
| best_ratio_diff = diff | |
| best_ratio = ratio | |
| return best_ratio | |