Spaces:
Sleeping
Sleeping
# ✅ src/video_utils.py(返回 <image> prefix 支持多轮对话) | |
import numpy as np | |
import torch | |
from PIL import Image | |
from decord import VideoReader, cpu | |
import torchvision.transforms as T | |
from torchvision.transforms.functional import InterpolationMode | |
IMAGENET_MEAN = (0.485, 0.456, 0.406) | |
IMAGENET_STD = (0.229, 0.224, 0.225) | |
# 图像预处理 transform | |
def build_transform(input_size=448): | |
return T.Compose([ | |
T.Lambda(lambda img: img.convert('RGB') if img.mode != 'RGB' else img), | |
T.Resize((input_size, input_size), interpolation=InterpolationMode.BICUBIC), | |
T.ToTensor(), | |
T.Normalize(mean=IMAGENET_MEAN, std=IMAGENET_STD) | |
]) | |
# 视频帧采样策略 | |
def get_frame_indices(num_frames, total_frames): | |
indices = np.linspace(0, total_frames - 1, num_frames, dtype=int) | |
return indices | |
# 构建 <image> token 的前缀信息 | |
def build_image_prefix(num_frames: int) -> str: | |
return ''.join([f"Frame{i+1}: <image>\n" for i in range(num_frames)]) | |
# 视频处理为 patch tensor,并返回 <image> 前缀 | |
def process_video_for_internvl3(video_path, num_segments=8, max_patch_per_frame=1, input_size=448): | |
vr = VideoReader(video_path, ctx=cpu(0)) | |
total_frames = len(vr) | |
frame_indices = get_frame_indices(num_segments, total_frames) | |
transform = build_transform(input_size) | |
pixel_values_list, num_patches_list = [], [] | |
for idx in frame_indices: | |
img = Image.fromarray(vr[idx].asnumpy()).convert("RGB") | |
patches = dynamic_preprocess(img, image_size=input_size, max_num=max_patch_per_frame) | |
patch_tensors = [transform(tile) for tile in patches] | |
patch_tensor = torch.stack(patch_tensors) | |
pixel_values_list.append(patch_tensor) | |
num_patches_list.append(patch_tensor.shape[0]) | |
pixel_values = torch.cat(pixel_values_list, dim=0).to(torch.bfloat16).cuda() | |
image_prefix = build_image_prefix(len(num_patches_list)) | |
return pixel_values, num_patches_list, image_prefix | |
# 图像切块 | |
def dynamic_preprocess(image, min_num=1, max_num=12, image_size=448, use_thumbnail=True): | |
orig_width, orig_height = image.size | |
aspect_ratio = orig_width / orig_height | |
target_ratios = set( | |
(i, j) for n in range(min_num, max_num + 1) for i in range(1, n + 1) for j in range(1, n + 1) | |
if i * j <= max_num and i * j >= min_num | |
) | |
target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1]) | |
best_ratio = find_closest_aspect_ratio(aspect_ratio, target_ratios, orig_width, orig_height, image_size) | |
target_width = image_size * best_ratio[0] | |
target_height = image_size * best_ratio[1] | |
blocks = best_ratio[0] * best_ratio[1] | |
resized_img = image.resize((target_width, target_height)) | |
processed_images = [] | |
for i in range(blocks): | |
box = ( | |
(i % (target_width // image_size)) * image_size, | |
(i // (target_width // image_size)) * image_size, | |
((i % (target_width // image_size)) + 1) * image_size, | |
((i // (target_width // image_size)) + 1) * image_size | |
) | |
split_img = resized_img.crop(box) | |
processed_images.append(split_img) | |
if use_thumbnail and len(processed_images) != 1: | |
thumbnail_img = image.resize((image_size, image_size)) | |
processed_images.append(thumbnail_img) | |
return processed_images | |
# 找最接近原图比例的切块方案 | |
def find_closest_aspect_ratio(aspect_ratio, target_ratios, width, height, image_size): | |
best_ratio_diff = float('inf') | |
best_ratio = (1, 1) | |
area = width * height | |
for ratio in target_ratios: | |
target_aspect = ratio[0] / ratio[1] | |
diff = abs(aspect_ratio - target_aspect) | |
if diff < best_ratio_diff or (diff == best_ratio_diff and area > 0.5 * image_size**2 * ratio[0] * ratio[1]): | |
best_ratio_diff = diff | |
best_ratio = ratio | |
return best_ratio | |