Spaces:
Sleeping
Sleeping
File size: 4,003 Bytes
78b768f 7ea733c 78b768f 7ea733c 78b768f 7ea733c 78b768f 7ea733c 78b768f 7ea733c 78b768f 7ea733c 78b768f 7ea733c 78b768f 7ea733c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 |
# ✅ src/video_utils.py(返回 <image> prefix 支持多轮对话)
import numpy as np
import torch
from PIL import Image
from decord import VideoReader, cpu
import torchvision.transforms as T
from torchvision.transforms.functional import InterpolationMode
IMAGENET_MEAN = (0.485, 0.456, 0.406)
IMAGENET_STD = (0.229, 0.224, 0.225)
# 图像预处理 transform
def build_transform(input_size=448):
return T.Compose([
T.Lambda(lambda img: img.convert('RGB') if img.mode != 'RGB' else img),
T.Resize((input_size, input_size), interpolation=InterpolationMode.BICUBIC),
T.ToTensor(),
T.Normalize(mean=IMAGENET_MEAN, std=IMAGENET_STD)
])
# 视频帧采样策略
def get_frame_indices(num_frames, total_frames):
indices = np.linspace(0, total_frames - 1, num_frames, dtype=int)
return indices
# 构建 <image> token 的前缀信息
def build_image_prefix(num_frames: int) -> str:
return ''.join([f"Frame{i+1}: <image>\n" for i in range(num_frames)])
# 视频处理为 patch tensor,并返回 <image> 前缀
def process_video_for_internvl3(video_path, num_segments=8, max_patch_per_frame=1, input_size=448):
vr = VideoReader(video_path, ctx=cpu(0))
total_frames = len(vr)
frame_indices = get_frame_indices(num_segments, total_frames)
transform = build_transform(input_size)
pixel_values_list, num_patches_list = [], []
for idx in frame_indices:
img = Image.fromarray(vr[idx].asnumpy()).convert("RGB")
patches = dynamic_preprocess(img, image_size=input_size, max_num=max_patch_per_frame)
patch_tensors = [transform(tile) for tile in patches]
patch_tensor = torch.stack(patch_tensors)
pixel_values_list.append(patch_tensor)
num_patches_list.append(patch_tensor.shape[0])
pixel_values = torch.cat(pixel_values_list, dim=0).to(torch.bfloat16).cuda()
image_prefix = build_image_prefix(len(num_patches_list))
return pixel_values, num_patches_list, image_prefix
# 图像切块
def dynamic_preprocess(image, min_num=1, max_num=12, image_size=448, use_thumbnail=True):
orig_width, orig_height = image.size
aspect_ratio = orig_width / orig_height
target_ratios = set(
(i, j) for n in range(min_num, max_num + 1) for i in range(1, n + 1) for j in range(1, n + 1)
if i * j <= max_num and i * j >= min_num
)
target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1])
best_ratio = find_closest_aspect_ratio(aspect_ratio, target_ratios, orig_width, orig_height, image_size)
target_width = image_size * best_ratio[0]
target_height = image_size * best_ratio[1]
blocks = best_ratio[0] * best_ratio[1]
resized_img = image.resize((target_width, target_height))
processed_images = []
for i in range(blocks):
box = (
(i % (target_width // image_size)) * image_size,
(i // (target_width // image_size)) * image_size,
((i % (target_width // image_size)) + 1) * image_size,
((i // (target_width // image_size)) + 1) * image_size
)
split_img = resized_img.crop(box)
processed_images.append(split_img)
if use_thumbnail and len(processed_images) != 1:
thumbnail_img = image.resize((image_size, image_size))
processed_images.append(thumbnail_img)
return processed_images
# 找最接近原图比例的切块方案
def find_closest_aspect_ratio(aspect_ratio, target_ratios, width, height, image_size):
best_ratio_diff = float('inf')
best_ratio = (1, 1)
area = width * height
for ratio in target_ratios:
target_aspect = ratio[0] / ratio[1]
diff = abs(aspect_ratio - target_aspect)
if diff < best_ratio_diff or (diff == best_ratio_diff and area > 0.5 * image_size**2 * ratio[0] * ratio[1]):
best_ratio_diff = diff
best_ratio = ratio
return best_ratio
|