# ✅ src/video_utils.py(返回 prefix 支持多轮对话) import numpy as np import torch from PIL import Image from decord import VideoReader, cpu import torchvision.transforms as T from torchvision.transforms.functional import InterpolationMode IMAGENET_MEAN = (0.485, 0.456, 0.406) IMAGENET_STD = (0.229, 0.224, 0.225) # 图像预处理 transform def build_transform(input_size=448): return T.Compose([ T.Lambda(lambda img: img.convert('RGB') if img.mode != 'RGB' else img), T.Resize((input_size, input_size), interpolation=InterpolationMode.BICUBIC), T.ToTensor(), T.Normalize(mean=IMAGENET_MEAN, std=IMAGENET_STD) ]) # 视频帧采样策略 def get_frame_indices(num_frames, total_frames): indices = np.linspace(0, total_frames - 1, num_frames, dtype=int) return indices # 构建 token 的前缀信息 def build_image_prefix(num_frames: int) -> str: return ''.join([f"Frame{i+1}: \n" for i in range(num_frames)]) # 视频处理为 patch tensor,并返回 前缀 def process_video_for_internvl3(video_path, num_segments=8, max_patch_per_frame=1, input_size=448): vr = VideoReader(video_path, ctx=cpu(0)) total_frames = len(vr) frame_indices = get_frame_indices(num_segments, total_frames) transform = build_transform(input_size) pixel_values_list, num_patches_list = [], [] for idx in frame_indices: img = Image.fromarray(vr[idx].asnumpy()).convert("RGB") patches = dynamic_preprocess(img, image_size=input_size, max_num=max_patch_per_frame) patch_tensors = [transform(tile) for tile in patches] patch_tensor = torch.stack(patch_tensors) pixel_values_list.append(patch_tensor) num_patches_list.append(patch_tensor.shape[0]) pixel_values = torch.cat(pixel_values_list, dim=0).to(torch.bfloat16).cuda() image_prefix = build_image_prefix(len(num_patches_list)) return pixel_values, num_patches_list, image_prefix # 图像切块 def dynamic_preprocess(image, min_num=1, max_num=12, image_size=448, use_thumbnail=True): orig_width, orig_height = image.size aspect_ratio = orig_width / orig_height target_ratios = set( (i, j) for n in range(min_num, max_num + 1) for i in range(1, n + 1) for j in range(1, n + 1) if i * j <= max_num and i * j >= min_num ) target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1]) best_ratio = find_closest_aspect_ratio(aspect_ratio, target_ratios, orig_width, orig_height, image_size) target_width = image_size * best_ratio[0] target_height = image_size * best_ratio[1] blocks = best_ratio[0] * best_ratio[1] resized_img = image.resize((target_width, target_height)) processed_images = [] for i in range(blocks): box = ( (i % (target_width // image_size)) * image_size, (i // (target_width // image_size)) * image_size, ((i % (target_width // image_size)) + 1) * image_size, ((i // (target_width // image_size)) + 1) * image_size ) split_img = resized_img.crop(box) processed_images.append(split_img) if use_thumbnail and len(processed_images) != 1: thumbnail_img = image.resize((image_size, image_size)) processed_images.append(thumbnail_img) return processed_images # 找最接近原图比例的切块方案 def find_closest_aspect_ratio(aspect_ratio, target_ratios, width, height, image_size): best_ratio_diff = float('inf') best_ratio = (1, 1) area = width * height for ratio in target_ratios: target_aspect = ratio[0] / ratio[1] diff = abs(aspect_ratio - target_aspect) if diff < best_ratio_diff or (diff == best_ratio_diff and area > 0.5 * image_size**2 * ratio[0] * ratio[1]): best_ratio_diff = diff best_ratio = ratio return best_ratio