File size: 7,815 Bytes
83f52c2
 
 
 
 
 
 
 
 
 
 
 
 
 
57338fa
83f52c2
 
 
 
 
 
 
f6e7388
 
 
 
 
 
 
 
83f52c2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
74e29d9
 
 
 
 
83f52c2
 
 
 
 
 
 
 
 
 
57338fa
83f52c2
 
57338fa
83f52c2
 
d7bae69
 
 
 
 
 
 
 
 
 
 
 
 
83f52c2
 
 
538ea49
 
 
 
 
83f52c2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f6e7388
 
 
 
 
 
83f52c2
 
 
 
 
d7bae69
 
 
 
 
 
 
 
 
 
 
 
 
 
f6e7388
d7bae69
 
 
 
 
83f52c2
d7bae69
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
83f52c2
 
 
 
 
 
 
 
 
 
 
 
f6e7388
 
 
 
 
83f52c2
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
import io
import os
import uuid
import logging
from typing import Optional

from fastapi import FastAPI, UploadFile, File, HTTPException, Depends, Header
from fastapi.responses import FileResponse, JSONResponse
from pydantic import BaseModel
import torch

import numpy as np
from PIL import Image

# Lazy import performed in get_model() to avoid import-time failures on Space


LOGGER = logging.getLogger("hair_server")
logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(name)s - %(message)s")

EXPECTED_BEARER = "logicgo@123"

# Optional Mongo persistence
from pymongo import MongoClient
MONGO_URI = os.environ.get("MONGO_URI", "")
mongo_client = MongoClient(MONGO_URI) if MONGO_URI else None
mongo_db = mongo_client.get_database("HairSwapDB") if mongo_client else None
uploads_col = mongo_db.get_collection("uploads") if mongo_db else None
results_col = mongo_db.get_collection("results") if mongo_db else None


def verify_bearer(authorization: Optional[str] = Header(None)):
    if not authorization:
        raise HTTPException(status_code=401, detail="Missing Authorization header")
    try:
        scheme, token = authorization.split(" ", 1)
    except ValueError:
        raise HTTPException(status_code=401, detail="Invalid Authorization header format")
    if scheme.lower() != "bearer":
        raise HTTPException(status_code=401, detail="Invalid auth scheme")
    if token != EXPECTED_BEARER:
        raise HTTPException(status_code=401, detail="Invalid token")
    return True


app = FastAPI(title="Hair Swap API", version="1.0.0")


@app.get("/health")
def health():
    return {"status": "healthy"}


@app.get("/")
def root():
    return {"status": "ok"}


class HairSwapRequest(BaseModel):
    source_id: str
    reference_id: str
    converter_scale: float = 1.0
    scale: float = 1.0
    guidance_scale: float = 1.5
    controlnet_conditioning_scale: float = 1.0


# Initialize model lazily on first request
_model = None  # type: ignore[assignment]


def get_model():
    global _model
    if _model is None:
        try:
            LOGGER.info("Loading StableHair model ...")
            device = "cuda" if torch.cuda.is_available() else "cpu"
            dtype = torch.float16 if device == "cuda" else torch.float32
            LOGGER.info(f"Using device: {device}, dtype: {dtype}")
            
            # Import here to defer importing diffusers/transformers until needed
            from infer_full import StableHair  # noqa: WPS433
            _model = StableHair(config="./configs/hair_transfer.yaml", device=device, weight_dtype=dtype)
            LOGGER.info("Model loaded successfully")
        except Exception as e:
            LOGGER.error(f"Failed to load model: {str(e)}")
            raise Exception(f"Model loading failed: {str(e)}")
    return _model


# Use a writable location on Hugging Face Spaces
BASE_DATA_DIR = os.environ.get("DATA_DIR", "/data")
UPLOAD_DIR = os.path.join(BASE_DATA_DIR, "uploads")
RESULTS_DIR = os.path.join(BASE_DATA_DIR, "results")
LOGS_DIR = os.path.join(BASE_DATA_DIR, "logs")
os.makedirs(UPLOAD_DIR, exist_ok=True)
os.makedirs(RESULTS_DIR, exist_ok=True)
os.makedirs(LOGS_DIR, exist_ok=True)


@app.post("/upload")
async def upload_image(image: UploadFile = File(...), _=Depends(verify_bearer)):
    if not image.filename:
        raise HTTPException(status_code=400, detail="No file name provided")
    contents = await image.read()
    try:
        Image.open(io.BytesIO(contents)).convert("RGB")
    except Exception:
        raise HTTPException(status_code=400, detail="Invalid image file")

    image_id = str(uuid.uuid4())
    ext = os.path.splitext(image.filename)[1] or ".png"
    path = os.path.join(UPLOAD_DIR, image_id + ext)
    with open(path, "wb") as f:
        f.write(contents)
    # Save metadata to Mongo
    if uploads_col:
        try:
            uploads_col.insert_one({"_id": image_id, "filename": os.path.basename(path), "path": path})
        except Exception:
            pass
    return {"id": image_id, "filename": os.path.basename(path)}


@app.post("/get-hairswap")
def get_hairswap(req: HairSwapRequest, _=Depends(verify_bearer)):
    try:
        # Resolve file paths
        def find_file(image_id: str) -> str:
            for name in os.listdir(UPLOAD_DIR):
                if name.startswith(image_id):
                    return os.path.join(UPLOAD_DIR, name)
            raise HTTPException(status_code=404, detail=f"Image id not found: {image_id}")

        source_path = find_file(req.source_id)
        reference_path = find_file(req.reference_id)
        
        LOGGER.info(f"Found source: {source_path}, reference: {reference_path}")

        # Load model with error handling
        try:
            model = get_model()
            LOGGER.info("Model loaded successfully")
        except Exception as e:
            LOGGER.error(f"Model loading failed: {str(e)}")
            raise HTTPException(status_code=500, detail=f"Model loading failed: {str(e)}")

        # Perform hair transfer with error handling
        try:
            LOGGER.info("Starting hair transfer...")
            id_np, out_np, bald_np, ref_np = model.Hair_Transfer(
                source_image=source_path,
                reference_image=reference_path,
                random_seed=-1,
                step=30,
                guidance_scale=req.guidance_scale,
                scale=req.scale,
                controlnet_conditioning_scale=req.controlnet_conditioning_scale,
                size=512,
            )
            LOGGER.info("Hair transfer completed successfully")
        except Exception as e:
            LOGGER.error(f"Hair transfer failed: {str(e)}")
            raise HTTPException(status_code=500, detail=f"Hair transfer failed: {str(e)}")

        # Save result
        try:
            result_id = str(uuid.uuid4())
            out_img = Image.fromarray((out_np * 255.).astype(np.uint8))
            filename = f"{result_id}.png"
            out_path = os.path.join(RESULTS_DIR, filename)
            out_img.save(out_path)
            LOGGER.info(f"Result saved: {out_path}")
            
            if results_col:
                try:
                    results_col.insert_one({
                        "_id": result_id,
                        "filename": filename,
                        "path": out_path,
                        "source_id": req.source_id,
                        "reference_id": req.reference_id,
                    })
                except Exception as e:
                    LOGGER.warning(f"MongoDB save failed: {str(e)}")

            return {"result": filename}
        except Exception as e:
            LOGGER.error(f"Result saving failed: {str(e)}")
            raise HTTPException(status_code=500, detail=f"Result saving failed: {str(e)}")
            
    except HTTPException:
        raise
    except Exception as e:
        LOGGER.error(f"Unexpected error in get_hairswap: {str(e)}")
        raise HTTPException(status_code=500, detail=f"Unexpected error: {str(e)}")


@app.get("/download/{filename}")
def download(filename: str, _=Depends(verify_bearer)):
    path = os.path.join(RESULTS_DIR, filename)
    if not os.path.exists(path):
        raise HTTPException(status_code=404, detail="File not found")
    return FileResponse(path, media_type="image/png", filename=filename)


@app.get("/logs")
def logs(_=Depends(verify_bearer)):
    if uploads_col and results_col:
        uploads = list(uploads_col.find({}, {"_id": 1, "filename": 1}).limit(20))
        results = list(results_col.find({}, {"_id": 1, "filename": 1, "source_id": 1, "reference_id": 1}).limit(20))
        return JSONResponse({"uploads": uploads, "results": results})
    return JSONResponse({"logs": ["service running"], "db": "not_configured"})