File size: 7,815 Bytes
83f52c2 57338fa 83f52c2 f6e7388 83f52c2 74e29d9 83f52c2 57338fa 83f52c2 57338fa 83f52c2 d7bae69 83f52c2 538ea49 83f52c2 f6e7388 83f52c2 d7bae69 f6e7388 d7bae69 83f52c2 d7bae69 83f52c2 f6e7388 83f52c2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 |
import io
import os
import uuid
import logging
from typing import Optional
from fastapi import FastAPI, UploadFile, File, HTTPException, Depends, Header
from fastapi.responses import FileResponse, JSONResponse
from pydantic import BaseModel
import torch
import numpy as np
from PIL import Image
# Lazy import performed in get_model() to avoid import-time failures on Space
LOGGER = logging.getLogger("hair_server")
logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(name)s - %(message)s")
EXPECTED_BEARER = "logicgo@123"
# Optional Mongo persistence
from pymongo import MongoClient
MONGO_URI = os.environ.get("MONGO_URI", "")
mongo_client = MongoClient(MONGO_URI) if MONGO_URI else None
mongo_db = mongo_client.get_database("HairSwapDB") if mongo_client else None
uploads_col = mongo_db.get_collection("uploads") if mongo_db else None
results_col = mongo_db.get_collection("results") if mongo_db else None
def verify_bearer(authorization: Optional[str] = Header(None)):
if not authorization:
raise HTTPException(status_code=401, detail="Missing Authorization header")
try:
scheme, token = authorization.split(" ", 1)
except ValueError:
raise HTTPException(status_code=401, detail="Invalid Authorization header format")
if scheme.lower() != "bearer":
raise HTTPException(status_code=401, detail="Invalid auth scheme")
if token != EXPECTED_BEARER:
raise HTTPException(status_code=401, detail="Invalid token")
return True
app = FastAPI(title="Hair Swap API", version="1.0.0")
@app.get("/health")
def health():
return {"status": "healthy"}
@app.get("/")
def root():
return {"status": "ok"}
class HairSwapRequest(BaseModel):
source_id: str
reference_id: str
converter_scale: float = 1.0
scale: float = 1.0
guidance_scale: float = 1.5
controlnet_conditioning_scale: float = 1.0
# Initialize model lazily on first request
_model = None # type: ignore[assignment]
def get_model():
global _model
if _model is None:
try:
LOGGER.info("Loading StableHair model ...")
device = "cuda" if torch.cuda.is_available() else "cpu"
dtype = torch.float16 if device == "cuda" else torch.float32
LOGGER.info(f"Using device: {device}, dtype: {dtype}")
# Import here to defer importing diffusers/transformers until needed
from infer_full import StableHair # noqa: WPS433
_model = StableHair(config="./configs/hair_transfer.yaml", device=device, weight_dtype=dtype)
LOGGER.info("Model loaded successfully")
except Exception as e:
LOGGER.error(f"Failed to load model: {str(e)}")
raise Exception(f"Model loading failed: {str(e)}")
return _model
# Use a writable location on Hugging Face Spaces
BASE_DATA_DIR = os.environ.get("DATA_DIR", "/data")
UPLOAD_DIR = os.path.join(BASE_DATA_DIR, "uploads")
RESULTS_DIR = os.path.join(BASE_DATA_DIR, "results")
LOGS_DIR = os.path.join(BASE_DATA_DIR, "logs")
os.makedirs(UPLOAD_DIR, exist_ok=True)
os.makedirs(RESULTS_DIR, exist_ok=True)
os.makedirs(LOGS_DIR, exist_ok=True)
@app.post("/upload")
async def upload_image(image: UploadFile = File(...), _=Depends(verify_bearer)):
if not image.filename:
raise HTTPException(status_code=400, detail="No file name provided")
contents = await image.read()
try:
Image.open(io.BytesIO(contents)).convert("RGB")
except Exception:
raise HTTPException(status_code=400, detail="Invalid image file")
image_id = str(uuid.uuid4())
ext = os.path.splitext(image.filename)[1] or ".png"
path = os.path.join(UPLOAD_DIR, image_id + ext)
with open(path, "wb") as f:
f.write(contents)
# Save metadata to Mongo
if uploads_col:
try:
uploads_col.insert_one({"_id": image_id, "filename": os.path.basename(path), "path": path})
except Exception:
pass
return {"id": image_id, "filename": os.path.basename(path)}
@app.post("/get-hairswap")
def get_hairswap(req: HairSwapRequest, _=Depends(verify_bearer)):
try:
# Resolve file paths
def find_file(image_id: str) -> str:
for name in os.listdir(UPLOAD_DIR):
if name.startswith(image_id):
return os.path.join(UPLOAD_DIR, name)
raise HTTPException(status_code=404, detail=f"Image id not found: {image_id}")
source_path = find_file(req.source_id)
reference_path = find_file(req.reference_id)
LOGGER.info(f"Found source: {source_path}, reference: {reference_path}")
# Load model with error handling
try:
model = get_model()
LOGGER.info("Model loaded successfully")
except Exception as e:
LOGGER.error(f"Model loading failed: {str(e)}")
raise HTTPException(status_code=500, detail=f"Model loading failed: {str(e)}")
# Perform hair transfer with error handling
try:
LOGGER.info("Starting hair transfer...")
id_np, out_np, bald_np, ref_np = model.Hair_Transfer(
source_image=source_path,
reference_image=reference_path,
random_seed=-1,
step=30,
guidance_scale=req.guidance_scale,
scale=req.scale,
controlnet_conditioning_scale=req.controlnet_conditioning_scale,
size=512,
)
LOGGER.info("Hair transfer completed successfully")
except Exception as e:
LOGGER.error(f"Hair transfer failed: {str(e)}")
raise HTTPException(status_code=500, detail=f"Hair transfer failed: {str(e)}")
# Save result
try:
result_id = str(uuid.uuid4())
out_img = Image.fromarray((out_np * 255.).astype(np.uint8))
filename = f"{result_id}.png"
out_path = os.path.join(RESULTS_DIR, filename)
out_img.save(out_path)
LOGGER.info(f"Result saved: {out_path}")
if results_col:
try:
results_col.insert_one({
"_id": result_id,
"filename": filename,
"path": out_path,
"source_id": req.source_id,
"reference_id": req.reference_id,
})
except Exception as e:
LOGGER.warning(f"MongoDB save failed: {str(e)}")
return {"result": filename}
except Exception as e:
LOGGER.error(f"Result saving failed: {str(e)}")
raise HTTPException(status_code=500, detail=f"Result saving failed: {str(e)}")
except HTTPException:
raise
except Exception as e:
LOGGER.error(f"Unexpected error in get_hairswap: {str(e)}")
raise HTTPException(status_code=500, detail=f"Unexpected error: {str(e)}")
@app.get("/download/{filename}")
def download(filename: str, _=Depends(verify_bearer)):
path = os.path.join(RESULTS_DIR, filename)
if not os.path.exists(path):
raise HTTPException(status_code=404, detail="File not found")
return FileResponse(path, media_type="image/png", filename=filename)
@app.get("/logs")
def logs(_=Depends(verify_bearer)):
if uploads_col and results_col:
uploads = list(uploads_col.find({}, {"_id": 1, "filename": 1}).limit(20))
results = list(results_col.find({}, {"_id": 1, "filename": 1, "source_id": 1, "reference_id": 1}).limit(20))
return JSONResponse({"uploads": uploads, "results": results})
return JSONResponse({"logs": ["service running"], "db": "not_configured"})
|