File size: 1,464 Bytes
944d166
 
 
 
 
 
804707d
 
944d166
804707d
 
944d166
804707d
944d166
 
 
4dddcfe
944d166
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
804707d
 
944d166
 
 
 
804707d
944d166
 
 
804707d
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
"""
Created on Sun Oct 01 10:49:43 2023
@author: Loges
"""

import streamlit as st
import sentencepiece
from transformers import pipeline, T5Tokenizer, T5ForConditionalGeneration

model=T5ForConditionalGeneration.from_pretrained("Logeswaransr/AI_Chaperone").to("cpu")
tokenizer=T5Tokenizer.from_pretrained("Logeswaransr/AI_Chaperone")

pipe=pipeline('text2text-generation', model=model, tokenizer=tokenizer)

greetings=["Hello!","I am AI Chaperone. Your special virtual assistant for your needs.", "Feel free to ask me anything. I will do what I can."]

st.set_page_config(page_title='AI Chaperone', layout='wide')

if 'messages' not in st.session_state:
    st.session_state.messages=[]

    for gr in greetings:
        st.session_state.messages.append({
            'role':'assistant',
            'content': gr})
    

st.subheader("AI Chaperone")

for message in st.session_state.messages:
    with st.chat_message(message['role']):
        st.markdown(message['content'])

if prompt:=st.chat_input("Enter your query"):
    with st.chat_message("user"):
        st.markdown(prompt)

    st.session_state.messages.append({
        'role':'user',
        'content': prompt})

    out=pipe(prompt)
    response=out[0]['generated_text']
    
    # response = f"Analysis: {response}"
    
    with st.chat_message("assistant"):
        st.markdown(response)
        
    st.session_state.messages.append({
        'role':'assistant',
        'content': response})