File size: 1,715 Bytes
ac8ea58 fbed061 ac8ea58 fbed061 ac8ea58 fbed061 ac8ea58 fbed061 ac8ea58 fbed061 ac8ea58 fbed061 ac8ea58 fbed061 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 |
import gradio as gr
from transformers import pipeline
# Загрузка модели Marco-o1
pipe = pipeline("text-generation", model="AIDC-AI/Marco-o1")
def respond(
message,
history: list[tuple[str, str]],
system_message,
max_tokens,
temperature,
top_p,
):
messages = [system_message]
for val in history:
if val[0]:
messages.append(val[0])
if val[1]:
messages.append(val[1])
messages.append(message)
# Объединяем все сообщения в одну строку для передачи в модель
input_text = "\n".join(messages)
response = pipe(
input_text,
max_length=max_tokens + len(input_text),
temperature=temperature,
top_p=top_p,
num_return_sequences=1
)[0]['generated_text']
# Извлекаем новый ответ, исключая входные сообщения
new_response = response[len(input_text):].strip()
yield new_response
"""
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
"""
demo = gr.ChatInterface(
respond,
additional_inputs=[
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.95,
step=0.05,
label="Top-p (nucleus sampling)",
),
],
)
if __name__ == "__main__":
demo.launch() |