File size: 8,864 Bytes
2235d26
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
import os
from PIL import Image
import torch

from point_e.diffusion.configs import DIFFUSION_CONFIGS, diffusion_from_config
from point_e.diffusion.sampler import PointCloudSampler
from point_e.models.download import load_checkpoint
from point_e.models.configs import MODEL_CONFIGS, model_from_config
from point_e.util.plotting import plot_point_cloud
from point_e.util.pc_to_mesh import marching_cubes_mesh

import skimage.measure

from pyntcloud import PyntCloud
import matplotlib.colors
import plotly.graph_objs as go

import trimesh

import gradio as gr


state = ""
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

def set_state(s):
    print(s)
    global state
    state = s

def get_state():
    return state

set_state('Creating txt2mesh model...')
t2m_name = 'base40M-textvec'
t2m_model = model_from_config(MODEL_CONFIGS[t2m_name], device)
t2m_model.eval()
base_diffusion_t2m = diffusion_from_config(DIFFUSION_CONFIGS[t2m_name])

set_state('Downloading txt2mesh checkpoint...')
t2m_model.load_state_dict(load_checkpoint(t2m_name, device))


def load_img2mesh_model(model_name):
    set_state(f'Creating img2mesh model {model_name}...')
    i2m_name = model_name
    i2m_model = model_from_config(MODEL_CONFIGS[i2m_name], device)
    i2m_model.eval()
    base_diffusion_i2m = diffusion_from_config(DIFFUSION_CONFIGS[i2m_name])

    set_state(f'Downloading img2mesh checkpoint {model_name}...')
    i2m_model.load_state_dict(load_checkpoint(i2m_name, device))

    return i2m_model, base_diffusion_i2m

img2mesh_model_name = 'base40M' #'base300M' #'base1B'
i2m_model, base_diffusion_i2m = load_img2mesh_model(img2mesh_model_name)


set_state('Creating upsample model...')
upsampler_model = model_from_config(MODEL_CONFIGS['upsample'], device)
upsampler_model.eval()
upsampler_diffusion = diffusion_from_config(DIFFUSION_CONFIGS['upsample'])

set_state('Downloading upsampler checkpoint...')
upsampler_model.load_state_dict(load_checkpoint('upsample', device))

set_state('Creating SDF model...')
sdf_name = 'sdf'
sdf_model = model_from_config(MODEL_CONFIGS[sdf_name], device)
sdf_model.eval()

set_state('Loading SDF model...')
sdf_model.load_state_dict(load_checkpoint(sdf_name, device))

stable_diffusion = gr.Blocks.load(name="spaces/runwayml/stable-diffusion-v1-5")


set_state('')

def get_sampler(model_name, txt2obj, guidance_scale):

    global img2mesh_model_name
    global base_diffusion_i2m
    global i2m_model
    if model_name != img2mesh_model_name:
        img2mesh_model_name = model_name
        i2m_model, base_diffusion_i2m = load_img2mesh_model(model_name)

    return PointCloudSampler(
            device=device,
            models=[t2m_model if txt2obj else i2m_model, upsampler_model],
            diffusions=[base_diffusion_t2m if txt2obj else base_diffusion_i2m, upsampler_diffusion],
            num_points=[1024, 4096 - 1024],
            aux_channels=['R', 'G', 'B'],
            guidance_scale=[guidance_scale, 0.0 if txt2obj else guidance_scale],
            model_kwargs_key_filter=('texts', '') if txt2obj else ("*",)
        )

def generate_txt2img(prompt):

    prompt = f"“a 3d rendering of {prompt}, full view, white background"
    gallery_dir = stable_diffusion(prompt, fn_index=2)
    imgs = [os.path.join(gallery_dir, img) for img in os.listdir(gallery_dir) if os.path.splitext(img)[1] == '.jpg']

    return imgs[0], gr.update(visible=True)

def generate_3D(input, model_name='base40M', guidance_scale=3.0, grid_size=32):

    set_state('Entered generate function...')

    if isinstance(input, Image.Image):
        input = prepare_img(input)

    # if input is a string, it's a text prompt
    sampler = get_sampler(model_name, txt2obj=True if isinstance(input, str) else False, guidance_scale=guidance_scale)

    # Produce a sample from the model.
    set_state('Sampling...')
    samples = None
    kw_args = dict(texts=[input]) if isinstance(input, str) else dict(images=[input])
    for x in sampler.sample_batch_progressive(batch_size=1, model_kwargs=kw_args):
        samples = x

    set_state('Converting to point cloud...')
    pc = sampler.output_to_point_clouds(samples)[0]

    set_state('Saving point cloud...')
    with open("point_cloud.ply", "wb") as f:
        pc.write_ply(f)

    set_state('Converting to mesh...')
    save_ply(pc, 'mesh.ply', grid_size)

    set_state('')

    return pc_to_plot(pc), ply_to_obj('mesh.ply', '3d_model.obj'), gr.update(value=['3d_model.obj', 'mesh.ply', 'point_cloud.ply'], visible=True)

def prepare_img(img):

    w, h = img.size
    if w > h:
        img = img.crop((w - h) / 2, 0, w - (w - h) / 2, h)
    else:
        img = img.crop((0, (h - w) / 2, w, h - (h - w) / 2))

    # resize to 256x256
    img = img.resize((256, 256))
    
    return img

def pc_to_plot(pc):

    return go.Figure(
        data=[
            go.Scatter3d(
                x=pc.coords[:,0], y=pc.coords[:,1], z=pc.coords[:,2], 
                mode='markers',
                marker=dict(
                  size=2,
                  color=['rgb({},{},{})'.format(r,g,b) for r,g,b in zip(pc.channels["R"], pc.channels["G"], pc.channels["B"])],
              )
            )
        ],
        layout=dict(
            scene=dict(xaxis=dict(visible=False), yaxis=dict(visible=False), zaxis=dict(visible=False))
        ),
    )

def ply_to_obj(ply_file, obj_file):
    mesh = trimesh.load(ply_file)
    mesh.export(obj_file)

    return obj_file

def save_ply(pc, file_name, grid_size):

    # Produce a mesh (with vertex colors)
    mesh = marching_cubes_mesh(
        pc=pc,
        model=sdf_model,
        batch_size=4096,
        grid_size=grid_size, # increase to 128 for resolution used in evals
        fill_vertex_channels=True,
        progress=True,
    )

    # Write the mesh to a PLY file to import into some other program.
    with open(file_name, 'wb') as f:
        mesh.write_ply(f)


with gr.Blocks() as app:
 
    
    with gr.Row():
        with gr.Column():
            with gr.Tab("Text to 3D"):
                prompt = gr.Textbox(label="Prompt", placeholder="A cactus in a pot")
                btn_generate_txt2obj = gr.Button(value="Generate")
            
            with gr.Tab("Image to 3D"):
                img = gr.Image(label="Image")
                gr.Markdown("Best results with images of 3D objects with no shadows on a white background.")
                btn_generate_img2obj = gr.Button(value="Generate")

            with gr.Tab("Text to Image to 3D"):
                gr.Markdown("Generate an image with Stable Diffusion, then convert it to 3D. Just enter the object you want to generate.")
                prompt_sd = gr.Textbox(label="Prompt", placeholder="a 3d rendering of [your prompt], full view, white background")
                btn_generate_txt2sd = gr.Button(value="Generate image")
                img_sd = gr.Image(label="Image")
                btn_generate_sd2obj = gr.Button(value="Convert to 3D", visible=False)

            with gr.Accordion("Advanced settings", open=False):
                dropdown_models = gr.Dropdown(label="Model", value="base40M", choices=["base40M", "base300M"]) #, "base1B"])
                guidance_scale = gr.Slider(label="Guidance scale", value=3.0, minimum=3.0, maximum=10.0, step=0.1)
                grid_size = gr.Slider(label="Grid size (for .obj 3D model)", value=32, minimum=16, maximum=128, step=16)

        with gr.Column():
            plot = gr.Plot(label="Point cloud")
            # btn_pc_to_obj = gr.Button(value="Convert to OBJ", visible=False)
            model_3d = gr.Model3D(value=None)
            file_out = gr.File(label="Files", visible=False)
            
            # state_info = state_info = gr.Textbox(label="State", show_label=False).style(container=False)


        # inputs = [dropdown_models, prompt, img, guidance_scale, grid_size]
        outputs = [plot, model_3d, file_out]

        prompt.submit(generate_3D, inputs=[prompt, dropdown_models, guidance_scale, grid_size], outputs=outputs)
        btn_generate_txt2obj.click(generate_3D, inputs=[prompt, dropdown_models, guidance_scale, grid_size], outputs=outputs)
        
        btn_generate_img2obj.click(generate_3D, inputs=[img, dropdown_models, guidance_scale, grid_size], outputs=outputs)

        prompt_sd.submit(generate_txt2img, inputs=prompt_sd, outputs=[img_sd, btn_generate_sd2obj])
        btn_generate_txt2sd.click(generate_txt2img, inputs=prompt_sd, outputs=[img_sd, btn_generate_sd2obj], queue=False)
        btn_generate_sd2obj.click(generate_3D, inputs=[img, dropdown_models, guidance_scale, grid_size], outputs=outputs)

        # btn_pc_to_obj.click(ply_to_obj, inputs=plot, outputs=[model_3d, file_out])

 
    # app.load(get_state, inputs=[], outputs=state_info, every=0.5, show_progress=False)


app.queue(max_size=250, concurrency_count=6).launch()