File size: 13,897 Bytes
d9ceac2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
# -*- coding: utf-8 -*-
"""LoanEligibilityPrediction.ipynb

Automatically generated by Colaboratory.

Original file is located at
    https://colab.research.google.com/drive/15wGr9tHgIq7Ua4af83Z0UqfAsH8dyOEZ

# IMPORT LIBRERIE
"""

# Commented out IPython magic to ensure Python compatibility.
import numpy as np
import pandas as pd
import seaborn as sns
import gradio as gr
import matplotlib.pyplot as plt
# %matplotlib inline

from sklearn.model_selection import train_test_split
from sklearn.preprocessing import MinMaxScaler
from sklearn.preprocessing import StandardScaler

"""# COLLEZIONE DATI"""

url = "https://raw.githubusercontent.com/livio-24/LoanEligibilityPrediction/main/dataset.csv"

#caricamento dataset in un pandas dataframe
dataset = pd.read_csv(url)

"""# EXPLORATORY DATA ANALYSIS"""

#prime 5 righe
dataset.head()

#numero righe e colonne
dataset.shape

dataset.describe()
#misure statistiche

#info sulle colonne
#5 variabili numeriche e 8 variabili categoriche
dataset.info()

#Distribuzione variabile target
dataset['Loan_Status'].value_counts()

# numero di valori mancanti in ogni colonna
# verranno gestiti successivamente nella fase di data cleaning
dataset.isnull().sum()

#eliminiamo colonna Loan_ID perché inutile
dataset.drop(columns='Loan_ID', axis = 1, inplace=True)

dataset.head()

"""**DATA VISUALIZATION - ANALISI UNIVARIATA**

VARIABILI CATEGORICHE
"""

#visualizzazione valori variabili catagoriche in percentuale
dataset['Gender'].value_counts(normalize=True).plot.bar(title='Gender')
plt.show()
dataset['Married'].value_counts(normalize=True).plot.bar(title='Married')
plt.show()
dataset['Self_Employed'].value_counts(normalize=True).plot.bar(title='Self_Employed')
plt.show()
dataset['Credit_History'].value_counts(normalize=True).plot.bar(title='Credit_History')
plt.show()

"""Risultati:
- 80% dei candidati nel dataset è maschio
- Circa il 65% dei candidati nel dataset è sposato/a
- Circa il 15% lavora in proprio
- Circa l'85% ha ripagato i propri debiti

VARIABILI ORDINALI
"""

#visualizzazione valori variabili ordinali in percentuale
dataset['Dependents'].value_counts(normalize=True).plot.bar(title='Dependents')
plt.show()
dataset['Education'].value_counts(normalize=True).plot.bar(title='Education')
plt.show()
dataset['Property_Area'].value_counts(normalize=True).plot.bar(title='Property_Area')
plt.show()

"""Risultati:
- La maggior parte dei candidati non ha familiari dipendenti
- Circa l'80% dei candidati ha una laurea
- La maggior parte dei candidati vive in un'area semiurbana

VARIABILI NUMERICHE
"""

#visualizzazione distribuzione variabile 'ApplicantIncome'
sns.distplot(dataset['ApplicantIncome'])
plt.show()
#boxplot per individuazione outliers
dataset.boxplot(['ApplicantIncome'])
plt.show()

#visualizzazione distribuzione variabile 'CoapplicantIncome'
sns.distplot(dataset['CoapplicantIncome'])
plt.show()
#boxplot per individuazione outliers
dataset.boxplot(['CoapplicantIncome'])
plt.show()

#visualizzazione distribuzione variabile 'LoanAmount'
sns.distplot(dataset['LoanAmount'])
plt.show()
dataset.boxplot(['LoanAmount'])
plt.show()

#dataset['LoanAmount'].hist(bins=20)

#visualizzazione distribuzione variabile 'Loan_Amount_Term'
sns.distplot(dataset['Loan_Amount_Term'])
plt.show()
dataset.boxplot(['Loan_Amount_Term'])
plt.show()

"""La maggior parte delle features numeriche ha degli outliers

**Matrice di correlazione**
"""

correlation_matrix = dataset.corr()

# heat map per visualizzare matrice di correlazione
sns.heatmap(correlation_matrix, cbar=True, fmt='.1f', annot=True, cmap='coolwarm')
#plt.savefig('Correlation Heat map', bbox_inches='tight')

"""Non ci sono molte variabili correlate tra di loro, le uniche due sono ApplicantIncome - LoanAmount"""

#conversione variabili categoriche in numeriche
dataset.replace({'Gender':{'Male':0, 'Female':1}, 'Married' :{'No':0, 'Yes':1}, 'Education':{'Not Graduate':0, 'Graduate':1}, 'Self_Employed':{'No':0, 'Yes':1}, 'Property_Area':{'Rural':0, 'Urban':1, 'Semiurban':2}, 'Loan_Status':{'N':0, 'Y':1}}, inplace = True)


# replacing the value of 3+ to 4
dataset['Dependents'].replace(to_replace='3+', value=4, inplace=True)

"""# DATA CLEANING

**CONTROLLO VALORI MANCANTI**
"""

dataset.isnull().sum()

#Sostituiamo i valori mancanti con la moda per le variabili categoriche
dataset['Gender'].fillna(dataset['Gender'].mode()[0], inplace=True)
dataset['Married'].fillna(dataset['Married'].mode()[0], inplace=True)
dataset['Dependents'].fillna(dataset['Dependents'].mode()[0], inplace=True)
dataset['Self_Employed'].fillna(dataset['Self_Employed'].mode()[0], inplace=True)
dataset['Credit_History'].fillna(dataset['Credit_History'].mode()[0], inplace=True)

#Utilizziamo la mediana poiché la variabile ha degli outliers, quindi non è un buon approccio utilizzare la media
dataset['LoanAmount'].fillna(dataset['LoanAmount'].median(), inplace=True)
#dataset['LoanAmount'].fillna(dataset['LoanAmount'].mean(), inplace=True)

dataset['Loan_Amount_Term'].value_counts()

#Nella variabile Loan_Amount_Term possiamo notare che 360 è il valore che si ripete di più, quindi utilizziamo la moda
dataset['Loan_Amount_Term'].fillna(dataset['Loan_Amount_Term'].mode()[0], inplace=True)

dataset.isnull().sum()

#Per trasformare Dtype di Dependents in int
dataset['Dependents'] = dataset['Dependents'].astype(str).astype(int)
dataset.info()

"""**GESTIONE OUTLIERS**"""

fig, axs = plt.subplots(2, 2, figsize=(10, 8))

#Distribuzioni prima di applicare log
sns.histplot(data=dataset, x="ApplicantIncome", kde=True, ax=axs[0, 0], color='green')
sns.histplot(data=dataset, x="CoapplicantIncome", kde=True, ax=axs[0, 1], color='skyblue')
sns.histplot(data=dataset, x="LoanAmount", kde=True, ax=axs[1, 0], color='orange')

# Log Transformation per normalizzare la distribuzione

dataset.ApplicantIncome = np.log(dataset.ApplicantIncome)
dataset.CoapplicantIncome = np.log(dataset.CoapplicantIncome + 1)
dataset.LoanAmount = np.log(dataset.LoanAmount)

fig, axs = plt.subplots(2, 2, figsize=(10, 8))

#Distribuzioni dopo aver applicato log
sns.histplot(data=dataset, x="ApplicantIncome", kde=True, ax=axs[0, 0], color='green')
sns.histplot(data=dataset, x="CoapplicantIncome", kde=True, ax=axs[0, 1], color='skyblue')
sns.histplot(data=dataset, x="LoanAmount", kde=True, ax=axs[1, 0], color='orange')

"""Possiamo notare che la distribuzione è migliorata dopo aver applicato il logaritmo

# SPLIT DATASET
"""

#definizione variabili dipendenti e indipendenti

x = dataset.drop('Loan_Status', axis = 1)
y = dataset['Loan_Status']

#split dataset

X_train, X_test, y_train, y_test = train_test_split(x, y, test_size=0.2, random_state=42, stratify = y)

print("X_train dataset: ", X_train.shape)
print("y_train dataset: ", y_train.shape)
print("X_test dataset: ", X_test.shape)
print("y_test dataset: ", y_test.shape)

y_test.value_counts()

#Distribuzione della variabile dipendente
plt.figure(figsize=(5,5))
pd.value_counts(dataset['Loan_Status']).plot.bar()
plt.xlabel('Loan_Status')
plt.ylabel('Frequency')
dataset['Loan_Status'].value_counts()
plt.savefig('target_distr', bbox_inches='tight')

"""# DATA SCALING"""

#Normalizzazione
scaler = MinMaxScaler(feature_range=(0, 1))
X_train = scaler.fit_transform(X_train)
X_test = scaler.fit_transform(X_test)

#z-score
#scaler = StandardScaler()
#X_train=scaler.fit_transform(X_train)
#X_test=scaler.transform(X_test)

df = pd.DataFrame(X_train, columns = x.columns)

df

"""# FEATURE SELECTION"""

#feature selection supervisionata

from sklearn.feature_selection import SelectKBest
from sklearn.feature_selection import chi2, f_classif
from numpy import set_printoptions

fs = SelectKBest(score_func=chi2,k=5)
fs.fit_transform(X_train, y_train)

X_new_train = fs.transform(X_train)
X_new_test = fs.transform(X_test)
print(X_new_train.shape)

x.columns[fs.get_support(indices=True)]
print("features selezionate: ", x.columns[fs.get_support(indices=True)].tolist())

"""# COSTRUZIONE MODELLI"""

models = []
precision = []
accuracy = []
recall = []
f1 = []

"""**LOGISTIC REGRESSION**"""

from sklearn.linear_model import LogisticRegression
from sklearn.metrics import classification_report, confusion_matrix, plot_confusion_matrix, accuracy_score ,recall_score, precision_score, f1_score

logisticRegr = LogisticRegression()
logisticRegr.fit(X_new_train, y_train)

y_train_pred = logisticRegr.predict(X_new_train)
y_test_pred = logisticRegr.predict(X_new_test)

fig, ax = plt.subplots(figsize=(8, 8))
plot_confusion_matrix(logisticRegr, X_new_test, y_test, ax=ax)
plt.show()
#print(confusion_matrix(y_test, y_test_pred))

#Risultati ottenuti
print(classification_report(y_test, y_test_pred))
print("Accuracy on training data:",accuracy_score(y_train, y_train_pred))
print("Accuracy on test data:",accuracy_score(y_test, y_test_pred))

models.append('Logistic Regression')
accuracy.append(accuracy_score(y_test, y_test_pred))
recall.append(recall_score(y_test, y_test_pred))
precision.append(precision_score(y_test, y_test_pred))
f1.append(f1_score(y_test, y_test_pred))

"""**DECISION TREE**"""

from sklearn.tree import DecisionTreeClassifier

tree_model = DecisionTreeClassifier( random_state=42)
tree_model.fit(X_new_train, y_train)

y_train_pred = tree_model.predict(X_new_train)
y_test_pred = tree_model.predict(X_new_test)

fig, ax = plt.subplots(figsize=(8, 8))
plot_confusion_matrix(logisticRegr, X_new_test, y_test, ax=ax)  
plt.show()

print(classification_report(y_test, y_test_pred))
print("Accuracy on training data:",accuracy_score(y_train, y_train_pred))
print("Accuracy on test data:",accuracy_score(y_test, y_test_pred))

models.append('Decision Tree')
accuracy.append(accuracy_score(y_test, y_test_pred))
recall.append(recall_score(y_test, y_test_pred))
precision.append(precision_score(y_test, y_test_pred))
f1.append(f1_score(y_test, y_test_pred))

"""**NAIVE BAYES**"""

from sklearn.naive_bayes import  GaussianNB

NB = GaussianNB()
NB.fit(X_new_train, y_train)

y_train_pred = NB.predict(X_new_train)
y_test_pred = NB.predict(X_new_test)

fig, ax = plt.subplots(figsize=(8, 8))
plot_confusion_matrix(NB, X_new_test, y_test, ax=ax)  
plt.show()

print(classification_report(y_test, y_test_pred))
print("Accuracy on training data:",accuracy_score(y_train, y_train_pred))
print("Accuracy on test data:",accuracy_score(y_test, y_test_pred))

models.append('Naive Bayes')
accuracy.append(accuracy_score(y_test, y_test_pred))
recall.append(recall_score(y_test, y_test_pred))
precision.append(precision_score(y_test, y_test_pred))
f1.append(f1_score(y_test, y_test_pred))

"""**RANDOM FOREST**"""

from sklearn.ensemble import RandomForestClassifier

RandomForest = RandomForestClassifier()
RandomForest.fit(X_new_train, y_train)

y_train_pred = RandomForest.predict(X_new_train)
y_test_pred = RandomForest.predict(X_new_test)

fig, ax = plt.subplots(figsize=(8, 8))
plot_confusion_matrix(RandomForest, X_new_test, y_test, ax=ax)  
plt.show()

print(classification_report(y_test, y_test_pred))
print("Accuracy on training data:",accuracy_score(y_train, y_train_pred))
print("Accuracy on test data:",accuracy_score(y_test, y_test_pred))

models.append('Random Forest')
accuracy.append(accuracy_score(y_test, y_test_pred))
recall.append(recall_score(y_test, y_test_pred))
precision.append(precision_score(y_test, y_test_pred))
f1.append(f1_score(y_test, y_test_pred))

"""**XGBOOST**"""

from xgboost import XGBClassifier

XGB = XGBClassifier()
XGB.fit(X_new_train, y_train)

y_train_pred = XGB.predict(X_new_train)
y_test_pred = XGB.predict(X_new_test)

fig, ax = plt.subplots(figsize=(8, 8))
plot_confusion_matrix(XGB, X_new_test, y_test, ax=ax)  
plt.show()

print(classification_report(y_test, y_test_pred))
print("Accuracy on training data:",accuracy_score(y_train, y_train_pred))
print("Accuracy on test data:",accuracy_score(y_test, y_test_pred))

models.append('XGBoost')
accuracy.append(accuracy_score(y_test, y_test_pred))
recall.append(recall_score(y_test, y_test_pred))
precision.append(precision_score(y_test, y_test_pred))
f1.append(f1_score(y_test, y_test_pred))

"""**CONFRONTO METRICHE**"""

compare = pd.DataFrame({'Model': models, 
                        'Accuracy': accuracy,
                        'Precision': precision,
                        'Recall': recall,
                        'f1_score': f1})
compare.sort_values(by='Accuracy', ascending=False)
#print(compare.to_latex())

def loan(Gender,	Married, Dependents, Education,	Self_Employed,	ApplicantIncome,	CoapplicantIncome,	LoanAmount,	Loan_Amount_Term,	Credit_History,	Property_Area):
#turning the arguments into a numpy array  
  Marr = 0 if Married == 'No' else 1
  Educ = 0 if Education == 'Not Graduate' else 1
  CredHis = 0 if Credit_History == '0: bad credit history' else  1
  Dep = 4 if Dependents == '3+' else Dependents

  if Property_Area == 'Rural': PA = 0
  elif Property_Area == 'Urban': PA = 1
  else: PA = 2

  x = np.array([Marr, Educ, CoapplicantIncome, CredHis,	PA])
  #reshaping into 2D array
  x_resh = x.reshape(1,-1)
  prediction = logisticRegr.predict(scaler.transform(x_resh))

  return ("Loan approved" if prediction[0] == 1 else "Loan not approved")

app = gr.Interface(fn=loan, 
                   inputs=[gr.Radio(['Male', 'Female']),
                           gr.Radio(['Yes', 'No']),
                           gr.Radio(['0', '1', '2', '3+']),
                           gr.Radio(['Graduate', 'Not Graduate']),
                           gr.Radio(['Yes', 'No']),
                           "number",
                           "number",
                           "number",
                           "number",
                           gr.Radio(['0: bad credit history', '1: good credit history']),
                           gr.Radio(['Urban', 'Semiurban', 'Rural'])],
                    outputs="text",
                    title = "Loan Eligibility Prediction")
app.launch(debug=True)