Spaces:
Runtime error
Runtime error
File size: 13,905 Bytes
69a6cef |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 |
import datetime
import glob
import json
import os.path
import zipfile
from typing import Union, Tuple, List, Optional
import pandas as pd
from ditk import logging
from gchar.games import get_character
from gchar.games.base import Character
from hbutils.string import plural_word
from hbutils.system import TemporaryDirectory
from huggingface_hub import CommitOperationAdd, hf_hub_url
from waifuc.action import NoMonochromeAction, FilterSimilarAction, \
TaggingAction, PersonSplitAction, FaceCountAction, CCIPAction, ModeConvertAction, ClassFilterAction, \
FileOrderAction, RatingFilterAction, BaseAction, RandomFilenameAction, PaddingAlignAction, ThreeStageSplitAction, \
AlignMinSizeAction, MinSizeFilterAction, FilterAction
from waifuc.action.filter import MinAreaFilterAction
from waifuc.export import SaveExporter, TextualInversionExporter
from waifuc.model import ImageItem
from waifuc.source import GcharAutoSource, BaseDataSource, LocalSource
from waifuc.utils import task_ctx
from ..utils import number_to_tag, get_ch_name, get_alphabet_name, get_hf_client, download_file, get_hf_fs
def get_source(source) -> BaseDataSource:
if isinstance(source, (str, Character)):
source = GcharAutoSource(source, main_sources_count=5)
elif isinstance(source, BaseDataSource):
pass
else:
raise TypeError(f'Unknown source type - {source!r}.')
return source
def get_main_source(source, no_r18: bool = False, bg_color: str = 'white',
no_monochrome_check: bool = False,
drop_multi: bool = True, skip: bool = False) -> BaseDataSource:
source: BaseDataSource = get_source(source)
if not skip:
actions = [ModeConvertAction('RGB', bg_color)]
if not no_monochrome_check:
actions.append(NoMonochromeAction()) # no monochrome, greyscale or sketch
actions.append(ClassFilterAction(['illustration', 'bangumi'])) # no comic or 3d
if no_r18:
actions.append(RatingFilterAction(['safe', 'r15']))
actions.append(FilterSimilarAction('all')) # filter duplicated images
if drop_multi:
actions.append(FaceCountAction(count=1, level='n')) # drop images with 0 or >1 faces
actions.extend([
PersonSplitAction(level='n'), # crop for each person
FaceCountAction(count=1, level='n'),
FileOrderAction(), # Rename files in order
CCIPAction(min_val_count=15), # CCIP, filter the character you may not want to see in dataset
FilterSimilarAction('all'), # filter duplicated images
MinSizeFilterAction(320),
TaggingAction(force=True, character_threshold=1.01),
])
actions.append(RandomFilenameAction(ext='.png'))
else:
actions = []
return source.attach(*actions)
def actions_parse(actions: Union[int, Tuple[int, int], List[BaseAction]], bg_color: str = 'white'):
if isinstance(actions, list):
return actions
elif isinstance(actions, tuple):
width, height = actions
return [PaddingAlignAction((width, height), bg_color)]
elif isinstance(actions, int):
return [AlignMinSizeAction(actions)]
else:
raise TypeError(f'Unknown post action type - {actions!r}.')
class CustomMinSizeAction(FilterAction):
def __init__(self, main_size: int = 280, min_eye_size: int = 180):
self.main_size = main_size
self.min_eye_size = min_eye_size
def check(self, item: ImageItem) -> bool:
min_size = min(item.image.width, item.image.height)
if 'crop' in item.meta and item.meta['crop']['type'] == 'eye':
return min_size >= self.min_eye_size
else:
return min_size >= self.main_size
_SOURCES = {
'native': [
TaggingAction(force=False, character_threshold=1.01),
],
'stage3': [
ThreeStageSplitAction(split_person=False),
FilterSimilarAction(),
MinSizeFilterAction(280),
TaggingAction(force=False, character_threshold=1.01),
],
'stage3-eyes': [
ThreeStageSplitAction(split_person=False, split_eyes=True),
FilterSimilarAction(),
CustomMinSizeAction(280, 180),
TaggingAction(force=False, character_threshold=1.01),
]
}
_DEFAULT_RESOLUTIONS = {
'raw': ('native', [], 'Raw data with meta information.'),
'raw-stage3': ('stage3', [], '3-stage cropped raw data with meta information.'),
'raw-stage3-eyes': ('stage3-eyes', [], '3-stage cropped (with eye-focus) raw data with meta information.'),
'384x512': ('native', (384, 512), '384x512 aligned dataset.'),
# '512x512': ('native', (512, 512), '512x512 aligned dataset.'),
'512x704': ('native', (512, 704), '512x704 aligned dataset.'),
# '640x640': ('native', (640, 640), '640x640 aligned dataset.'),
'640x880': ('native', (640, 880), '640x880 aligned dataset.'),
'stage3-640': ('stage3', 640, '3-stage cropped dataset with the shorter side not exceeding 640 pixels.'),
'stage3-800': ('stage3', 800, '3-stage cropped dataset with the shorter side not exceeding 800 pixels.'),
'stage3-p512-640': ('stage3', [MinAreaFilterAction(512), AlignMinSizeAction(640)],
'3-stage cropped dataset with the area not less than 512x512 pixels.'),
# 'stage3-1200': ('stage3', 1200, '3-stage cropped dataset with the shorter side not exceeding 1200 pixels.'),
'stage3-eyes-640': ('stage3-eyes', 640, '3-stage cropped (with eye-focus) dataset '
'with the shorter side not exceeding 640 pixels.'),
'stage3-eyes-800': ('stage3-eyes', 800, '3-stage cropped (with eye-focus) dataset '
'with the shorter side not exceeding 800 pixels.'),
}
DATASET_PVERSION = 'v1.4'
def crawl_dataset_to_huggingface(
source: Union[str, Character, BaseDataSource], repository: Optional[str] = None,
name: Optional[str] = None, limit: Optional[int] = 1000, min_images: int = 10,
no_r18: bool = False, bg_color: str = 'white', drop_multi: bool = True, skip_preprocess: bool = False,
no_monochrome_check: bool = False,
repo_type: str = 'dataset', revision: str = 'main', path_in_repo: str = '.', private: bool = False,
):
if isinstance(source, (str, Character)):
if isinstance(source, str):
source = get_character(source)
name = f'{source.enname} ({source.__official_name__})'
if not repository:
repository = f'AppleHarem/{get_ch_name(source)}'
else:
if name is None:
raise ValueError('Name must be specified when source is not str or character.')
if not repository:
repository = f'AppleHarem/{get_alphabet_name(name)}'
origin_source = get_main_source(source, no_r18, bg_color, no_monochrome_check, drop_multi, skip_preprocess)
with TemporaryDirectory() as td:
# save origin directory
origin_dir = os.path.join(td, 'origin')
os.makedirs(origin_dir, exist_ok=True)
if limit is not None:
origin_source = origin_source[:limit]
with task_ctx('origin'):
origin_source.export(SaveExporter(origin_dir))
img_count = len(glob.glob(os.path.join(origin_dir, '*.png')))
if img_count < min_images:
logging.warn(f'Only {plural_word(img_count, "image")} found for {name} which is too few, '
f'skip post-processing and uploading.')
return
source_dir = os.path.join(td, 'source')
os.makedirs(source_dir, exist_ok=True)
for sname, actions in _SOURCES.items():
with task_ctx(f'source/{sname}'):
LocalSource(origin_dir).attach(*actions).export(SaveExporter(os.path.join(source_dir, sname)))
processed_dir = os.path.join(td, 'processed')
os.makedirs(processed_dir, exist_ok=True)
archive_dir = os.path.join(td, 'archives')
os.makedirs(archive_dir, exist_ok=True)
files_to_upload: List[Tuple[str, str]] = []
resolutions = _DEFAULT_RESOLUTIONS
columns = ['Name', 'Images', 'Download', 'Description']
rows = []
for rname, (sname, actions, description) in resolutions.items():
actions = actions_parse(actions, bg_color)
ox = LocalSource(os.path.join(source_dir, sname))
current_processed_dir = os.path.join(processed_dir, rname)
with task_ctx(f'archive/{rname}'):
if not rname.startswith('raw'): # raw is preserved for exporting json data
ox.attach(*actions).export(TextualInversionExporter(current_processed_dir))
else:
ox.attach(*actions).export(SaveExporter(current_processed_dir))
current_img_cnt = len(glob.glob(os.path.join(current_processed_dir, '*.png')))
zip_file = os.path.join(archive_dir, f'dataset-{rname}.zip')
with zipfile.ZipFile(zip_file, mode='w') as zf:
for directory, _, files in os.walk(current_processed_dir):
for file in files:
file_path = os.path.join(directory, file)
rel_file_path = os.path.relpath(file_path, current_processed_dir)
zf.write(
file_path,
'/'.join(rel_file_path.split(os.sep))
)
rows.append((
rname,
current_img_cnt,
f'[Download]({os.path.basename(zip_file)})',
description,
))
files_to_upload.append((zip_file, os.path.basename(zip_file)))
meta_file = os.path.join(td, 'meta.json')
with open(meta_file, 'w', encoding='utf-8') as mf:
json.dump({
'name': name,
'version': DATASET_PVERSION,
}, mf, indent=4, sort_keys=True, ensure_ascii=False)
files_to_upload.append((meta_file, 'meta.json'))
readme_file = os.path.join(td, 'README.md')
with open(readme_file, 'w', encoding='utf-8') as rf:
print(f'---', file=rf)
print(f'license: mit', file=rf)
print(f'task_categories:', file=rf)
print(f'- text-to-image', file=rf)
print(f'tags:', file=rf)
print(f'- art', file=rf)
print(f'- not-for-all-audiences', file=rf)
print(f'size_categories:', file=rf)
print(f'- {number_to_tag(img_count)}', file=rf)
print(f'---', file=rf)
print(f'', file=rf)
print(f'# Dataset of {name}', file=rf)
print(f'', file=rf)
print(f'This is the dataset of {name}, '
f'containing {plural_word(img_count, "images")} and their tags.', file=rf)
print(f'', file=rf)
print(f'Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), '
f'the auto-crawling system is powered by [DeepGHS Team](https://github.com/deepghs)'
f'([huggingface organization](https://huggingface.co/deepghs)). ', file=rf)
print(f'This is a WebUI contains crawlers and other thing: '
f'([LittleAppleWebUI](https://github.com/LittleApple-fp16/LittleAppleWebUI))', file=rf)
print(f'', file=rf)
df = pd.DataFrame(columns=columns, data=rows)
print(df.to_markdown(index=False), file=rf)
print('', file=rf)
files_to_upload.append((readme_file, 'README.md'))
hf_client = get_hf_client()
hf_fs = get_hf_fs()
logging.info(f'Initialize repository {repository!r}')
if not hf_fs.exists(f'datasets/{repository}/.gitattributes'):
hf_client.create_repo(repo_id=repository, repo_type=repo_type, exist_ok=True, private=private)
current_time = datetime.datetime.now().astimezone().strftime('%Y-%m-%d %H:%M:%S %Z')
commit_message = f"Publish character {name}, on {current_time}"
logging.info(f'Publishing character {name!r} to repository {repository!r} ...')
hf_client.create_commit(
repository,
[
CommitOperationAdd(
path_in_repo=f'{path_in_repo}/{filename}',
path_or_fileobj=local_file,
) for local_file, filename in files_to_upload
],
commit_message=commit_message,
repo_type=repo_type,
revision=revision,
run_as_future=False,
)
def remake_dataset_to_huggingface(
repository: Optional[str] = None, limit: Optional[int] = 200, min_images: int = 10,
no_r18: bool = False, bg_color: str = 'white', drop_multi: bool = True,
repo_type: str = 'dataset', revision: str = 'main', path_in_repo: str = '.',
):
hf_fs = get_hf_fs()
with TemporaryDirectory() as td:
zip_file = os.path.join(td, 'dataset-raw.zip')
download_file(hf_hub_url(repository, 'dataset-raw.zip', repo_type='dataset'), zip_file)
source_dir = os.path.join(td, 'source')
os.makedirs(source_dir, exist_ok=True)
with zipfile.ZipFile(zip_file, 'r') as zf:
zf.extractall(source_dir)
source = LocalSource(source_dir)
name = None
if hf_fs.exists(f'datasets/{repository}/meta.json'):
meta_json = json.loads(hf_fs.read_text(f'datasets/{repository}/meta.json'))
if 'name' in meta_json:
name = meta_json['name']
name = name or repository.split('/')[-1]
return crawl_dataset_to_huggingface(
source, repository, name,
limit, min_images, no_r18, bg_color, drop_multi, True,
repo_type, revision, path_in_repo
)
|