File size: 13,905 Bytes
69a6cef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
import datetime
import glob
import json
import os.path
import zipfile
from typing import Union, Tuple, List, Optional

import pandas as pd
from ditk import logging
from gchar.games import get_character
from gchar.games.base import Character
from hbutils.string import plural_word
from hbutils.system import TemporaryDirectory
from huggingface_hub import CommitOperationAdd, hf_hub_url
from waifuc.action import NoMonochromeAction, FilterSimilarAction, \
    TaggingAction, PersonSplitAction, FaceCountAction, CCIPAction, ModeConvertAction, ClassFilterAction, \
    FileOrderAction, RatingFilterAction, BaseAction, RandomFilenameAction, PaddingAlignAction, ThreeStageSplitAction, \
    AlignMinSizeAction, MinSizeFilterAction, FilterAction
from waifuc.action.filter import MinAreaFilterAction
from waifuc.export import SaveExporter, TextualInversionExporter
from waifuc.model import ImageItem
from waifuc.source import GcharAutoSource, BaseDataSource, LocalSource
from waifuc.utils import task_ctx

from ..utils import number_to_tag, get_ch_name, get_alphabet_name, get_hf_client, download_file, get_hf_fs


def get_source(source) -> BaseDataSource:
    if isinstance(source, (str, Character)):
        source = GcharAutoSource(source, main_sources_count=5)
    elif isinstance(source, BaseDataSource):
        pass
    else:
        raise TypeError(f'Unknown source type - {source!r}.')

    return source


def get_main_source(source, no_r18: bool = False, bg_color: str = 'white',
                    no_monochrome_check: bool = False,
                    drop_multi: bool = True, skip: bool = False) -> BaseDataSource:
    source: BaseDataSource = get_source(source)
    if not skip:
        actions = [ModeConvertAction('RGB', bg_color)]
        if not no_monochrome_check:
            actions.append(NoMonochromeAction())  # no monochrome, greyscale or sketch
        actions.append(ClassFilterAction(['illustration', 'bangumi']))  # no comic or 3d
        if no_r18:
            actions.append(RatingFilterAction(['safe', 'r15']))

        actions.append(FilterSimilarAction('all'))  # filter duplicated images
        if drop_multi:
            actions.append(FaceCountAction(count=1, level='n'))  # drop images with 0 or >1 faces
        actions.extend([
            PersonSplitAction(level='n'),  # crop for each person
            FaceCountAction(count=1, level='n'),
            FileOrderAction(),  # Rename files in order
            CCIPAction(min_val_count=15),  # CCIP, filter the character you may not want to see in dataset
            FilterSimilarAction('all'),  # filter duplicated images
            MinSizeFilterAction(320),
            TaggingAction(force=True, character_threshold=1.01),
        ])
        actions.append(RandomFilenameAction(ext='.png'))
    else:
        actions = []

    return source.attach(*actions)


def actions_parse(actions: Union[int, Tuple[int, int], List[BaseAction]], bg_color: str = 'white'):
    if isinstance(actions, list):
        return actions
    elif isinstance(actions, tuple):
        width, height = actions
        return [PaddingAlignAction((width, height), bg_color)]
    elif isinstance(actions, int):
        return [AlignMinSizeAction(actions)]
    else:
        raise TypeError(f'Unknown post action type - {actions!r}.')


class CustomMinSizeAction(FilterAction):
    def __init__(self, main_size: int = 280, min_eye_size: int = 180):
        self.main_size = main_size
        self.min_eye_size = min_eye_size

    def check(self, item: ImageItem) -> bool:
        min_size = min(item.image.width, item.image.height)
        if 'crop' in item.meta and item.meta['crop']['type'] == 'eye':
            return min_size >= self.min_eye_size
        else:
            return min_size >= self.main_size


_SOURCES = {
    'native': [
        TaggingAction(force=False, character_threshold=1.01),
    ],
    'stage3': [
        ThreeStageSplitAction(split_person=False),
        FilterSimilarAction(),
        MinSizeFilterAction(280),
        TaggingAction(force=False, character_threshold=1.01),
    ],
    'stage3-eyes': [
        ThreeStageSplitAction(split_person=False, split_eyes=True),
        FilterSimilarAction(),
        CustomMinSizeAction(280, 180),
        TaggingAction(force=False, character_threshold=1.01),
    ]
}

_DEFAULT_RESOLUTIONS = {
    'raw': ('native', [], 'Raw data with meta information.'),
    'raw-stage3': ('stage3', [], '3-stage cropped raw data with meta information.'),
    'raw-stage3-eyes': ('stage3-eyes', [], '3-stage cropped (with eye-focus) raw data with meta information.'),
    '384x512': ('native', (384, 512), '384x512 aligned dataset.'),
    # '512x512': ('native', (512, 512), '512x512 aligned dataset.'),
    '512x704': ('native', (512, 704), '512x704 aligned dataset.'),
    # '640x640': ('native', (640, 640), '640x640 aligned dataset.'),
    '640x880': ('native', (640, 880), '640x880 aligned dataset.'),
    'stage3-640': ('stage3', 640, '3-stage cropped dataset with the shorter side not exceeding 640 pixels.'),
    'stage3-800': ('stage3', 800, '3-stage cropped dataset with the shorter side not exceeding 800 pixels.'),
    'stage3-p512-640': ('stage3', [MinAreaFilterAction(512), AlignMinSizeAction(640)],
                        '3-stage cropped dataset with the area not less than 512x512 pixels.'),
    # 'stage3-1200': ('stage3', 1200, '3-stage cropped dataset with the shorter side not exceeding 1200 pixels.'),
    'stage3-eyes-640': ('stage3-eyes', 640, '3-stage cropped (with eye-focus) dataset '
                                            'with the shorter side not exceeding 640 pixels.'),
    'stage3-eyes-800': ('stage3-eyes', 800, '3-stage cropped (with eye-focus) dataset '
                                            'with the shorter side not exceeding 800 pixels.'),
}

DATASET_PVERSION = 'v1.4'


def crawl_dataset_to_huggingface(
        source: Union[str, Character, BaseDataSource], repository: Optional[str] = None,
        name: Optional[str] = None, limit: Optional[int] = 1000, min_images: int = 10,
        no_r18: bool = False, bg_color: str = 'white', drop_multi: bool = True, skip_preprocess: bool = False,
        no_monochrome_check: bool = False,
        repo_type: str = 'dataset', revision: str = 'main', path_in_repo: str = '.', private: bool = False,
):
    if isinstance(source, (str, Character)):
        if isinstance(source, str):
            source = get_character(source)
        name = f'{source.enname} ({source.__official_name__})'

        if not repository:
            repository = f'AppleHarem/{get_ch_name(source)}'

    else:
        if name is None:
            raise ValueError('Name must be specified when source is not str or character.')

        if not repository:
            repository = f'AppleHarem/{get_alphabet_name(name)}'

    origin_source = get_main_source(source, no_r18, bg_color, no_monochrome_check, drop_multi, skip_preprocess)
    with TemporaryDirectory() as td:
        # save origin directory
        origin_dir = os.path.join(td, 'origin')
        os.makedirs(origin_dir, exist_ok=True)
        if limit is not None:
            origin_source = origin_source[:limit]
        with task_ctx('origin'):
            origin_source.export(SaveExporter(origin_dir))

        img_count = len(glob.glob(os.path.join(origin_dir, '*.png')))
        if img_count < min_images:
            logging.warn(f'Only {plural_word(img_count, "image")} found for {name} which is too few, '
                         f'skip post-processing and uploading.')
            return

        source_dir = os.path.join(td, 'source')
        os.makedirs(source_dir, exist_ok=True)
        for sname, actions in _SOURCES.items():
            with task_ctx(f'source/{sname}'):
                LocalSource(origin_dir).attach(*actions).export(SaveExporter(os.path.join(source_dir, sname)))

        processed_dir = os.path.join(td, 'processed')
        os.makedirs(processed_dir, exist_ok=True)
        archive_dir = os.path.join(td, 'archives')
        os.makedirs(archive_dir, exist_ok=True)

        files_to_upload: List[Tuple[str, str]] = []
        resolutions = _DEFAULT_RESOLUTIONS

        columns = ['Name', 'Images', 'Download', 'Description']
        rows = []
        for rname, (sname, actions, description) in resolutions.items():
            actions = actions_parse(actions, bg_color)

            ox = LocalSource(os.path.join(source_dir, sname))
            current_processed_dir = os.path.join(processed_dir, rname)
            with task_ctx(f'archive/{rname}'):
                if not rname.startswith('raw'):  # raw is preserved for exporting json data
                    ox.attach(*actions).export(TextualInversionExporter(current_processed_dir))
                else:
                    ox.attach(*actions).export(SaveExporter(current_processed_dir))
            current_img_cnt = len(glob.glob(os.path.join(current_processed_dir, '*.png')))

            zip_file = os.path.join(archive_dir, f'dataset-{rname}.zip')
            with zipfile.ZipFile(zip_file, mode='w') as zf:
                for directory, _, files in os.walk(current_processed_dir):
                    for file in files:
                        file_path = os.path.join(directory, file)
                        rel_file_path = os.path.relpath(file_path, current_processed_dir)
                        zf.write(
                            file_path,
                            '/'.join(rel_file_path.split(os.sep))
                        )

            rows.append((
                rname,
                current_img_cnt,
                f'[Download]({os.path.basename(zip_file)})',
                description,
            ))

            files_to_upload.append((zip_file, os.path.basename(zip_file)))

        meta_file = os.path.join(td, 'meta.json')
        with open(meta_file, 'w', encoding='utf-8') as mf:
            json.dump({
                'name': name,
                'version': DATASET_PVERSION,
            }, mf, indent=4, sort_keys=True, ensure_ascii=False)
        files_to_upload.append((meta_file, 'meta.json'))

        readme_file = os.path.join(td, 'README.md')
        with open(readme_file, 'w', encoding='utf-8') as rf:
            print(f'---', file=rf)
            print(f'license: mit', file=rf)
            print(f'task_categories:', file=rf)
            print(f'- text-to-image', file=rf)
            print(f'tags:', file=rf)
            print(f'- art', file=rf)
            print(f'- not-for-all-audiences', file=rf)
            print(f'size_categories:', file=rf)
            print(f'- {number_to_tag(img_count)}', file=rf)
            print(f'---', file=rf)
            print(f'', file=rf)

            print(f'# Dataset of {name}', file=rf)
            print(f'', file=rf)

            print(f'This is the dataset of {name}, '
                  f'containing {plural_word(img_count, "images")} and their tags.', file=rf)
            print(f'', file=rf)

            print(f'Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), '
                  f'the auto-crawling system is powered by [DeepGHS Team](https://github.com/deepghs)'
                  f'([huggingface organization](https://huggingface.co/deepghs)). ', file=rf)
            print(f'This is a WebUI contains crawlers and other thing: '
                  f'([LittleAppleWebUI](https://github.com/LittleApple-fp16/LittleAppleWebUI))', file=rf)
            print(f'', file=rf)

            df = pd.DataFrame(columns=columns, data=rows)
            print(df.to_markdown(index=False), file=rf)
            print('', file=rf)

        files_to_upload.append((readme_file, 'README.md'))

        hf_client = get_hf_client()
        hf_fs = get_hf_fs()
        logging.info(f'Initialize repository {repository!r}')
        if not hf_fs.exists(f'datasets/{repository}/.gitattributes'):
            hf_client.create_repo(repo_id=repository, repo_type=repo_type, exist_ok=True, private=private)

        current_time = datetime.datetime.now().astimezone().strftime('%Y-%m-%d %H:%M:%S %Z')
        commit_message = f"Publish character {name}, on {current_time}"
        logging.info(f'Publishing character {name!r} to repository {repository!r} ...')
        hf_client.create_commit(
            repository,
            [
                CommitOperationAdd(
                    path_in_repo=f'{path_in_repo}/{filename}',
                    path_or_fileobj=local_file,
                ) for local_file, filename in files_to_upload
            ],
            commit_message=commit_message,
            repo_type=repo_type,
            revision=revision,
            run_as_future=False,
        )


def remake_dataset_to_huggingface(
        repository: Optional[str] = None, limit: Optional[int] = 200, min_images: int = 10,
        no_r18: bool = False, bg_color: str = 'white', drop_multi: bool = True,
        repo_type: str = 'dataset', revision: str = 'main', path_in_repo: str = '.',
):
    hf_fs = get_hf_fs()
    with TemporaryDirectory() as td:
        zip_file = os.path.join(td, 'dataset-raw.zip')
        download_file(hf_hub_url(repository, 'dataset-raw.zip', repo_type='dataset'), zip_file)

        source_dir = os.path.join(td, 'source')
        os.makedirs(source_dir, exist_ok=True)
        with zipfile.ZipFile(zip_file, 'r') as zf:
            zf.extractall(source_dir)

        source = LocalSource(source_dir)
        name = None
        if hf_fs.exists(f'datasets/{repository}/meta.json'):
            meta_json = json.loads(hf_fs.read_text(f'datasets/{repository}/meta.json'))
            if 'name' in meta_json:
                name = meta_json['name']
        name = name or repository.split('/')[-1]
        return crawl_dataset_to_huggingface(
            source, repository, name,
            limit, min_images, no_r18, bg_color, drop_multi, True,
            repo_type, revision, path_in_repo
        )