Spaces:
Runtime error
Runtime error
File size: 15,646 Bytes
69a6cef |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 |
import glob
import io
import json
import logging
import os
import re
import textwrap
from typing import Union, Optional, List
import markdown2
import numpy as np
from PIL import Image
from hbutils.string import plural_word
from hbutils.system import TemporaryDirectory
from imgutils.data import load_image
from imgutils.detect import detect_faces
from imgutils.metrics import ccip_extract_feature, ccip_batch_differences, ccip_default_threshold
from imgutils.validate import anime_rating_score
from pycivitai import civitai_find_online
from pycivitai.client import find_version_id_by_hash
from tqdm.auto import tqdm
from waifuc.source import LocalSource
from .export import draw_with_repo
from ..dataset import load_dataset_for_character
from ..publish.civitai import _tag_decode, try_find_title, try_get_title_from_repo
from ..utils import srequest, get_hf_fs, load_tags_from_directory
def publish_samples_to_civitai(images_dir, model: Union[int, str], model_version: Optional[str] = None,
model_creator='narugo1992', safe_only: bool = False,
extra_tags: Optional[List[str]] = None, post_title: str = None,
session_repo: str = 'narugo/civitai_session_p1'):
resource = civitai_find_online(model, model_version, creator=model_creator)
model_version_id = resource.version_id
post_title = post_title or f"{resource.model_name} - {resource.version_name} Review"
images = []
for img_file in glob.glob(os.path.join(images_dir, '*.png')):
img_filename = os.path.basename(img_file)
img_name = os.path.splitext(img_filename)[0]
img_info_filename = f'{img_name}_info.txt'
local_img_file = os.path.join(images_dir, img_filename)
local_info_file = os.path.join(images_dir, img_info_filename)
info = {}
with open(local_info_file, 'r', encoding='utf-8') as iif:
for line in iif:
line = line.strip()
if line:
info_name, info_text = line.split(':', maxsplit=1)
info[info_name.strip()] = info_text.strip()
meta = {
'cfgScale': int(round(float(info.get('Guidance Scale')))),
'negativePrompt': info.get('Neg Prompt'),
'prompt': info.get('Prompt'),
'sampler': info.get('Sample Method', "Euler a"),
'seed': int(info.get('Seed')),
'steps': int(info.get('Infer Steps')),
'Size': f"{info['Width']}x{info['Height']}",
}
if info.get('Clip Skip'):
meta['clipSkip'] = int(info['Clip Skip'])
if info.get('Model'):
meta['Model'] = info['Model']
pil_img_file = Image.open(local_img_file)
if pil_img_file.info.get('parameters'):
png_info_text = pil_img_file.info['parameters']
find_hash = re.findall(r'Model hash:\s*([a-zA-Z\d]+)', png_info_text, re.IGNORECASE)
if find_hash:
model_hash = find_hash[0].lower()
meta['hashes'] = {"model": model_hash}
meta["resources"] = [
{
"hash": model_hash,
"name": info['Model'],
"type": "model"
}
]
meta["Model hash"] = model_hash
nsfw = (info.get('Safe For Word', info.get('Safe For Work')) or '').lower() != 'yes'
rating_score = anime_rating_score(local_img_file)
safe_v = int(round(rating_score['safe'] * 10))
safe_r15 = int(round(rating_score['r15'] * 10))
safe_r18 = int(round(rating_score['r18'] * 10))
faces = detect_faces(local_img_file)
if faces:
(x0, y0, x1, y1), _, _ = faces[0]
width, height = load_image(local_img_file).size
face_area = abs((x1 - x0) * (y1 - y0))
face_ratio = face_area * 1.0 / (width * height)
face_ratio = int(round(face_ratio * 50))
else:
continue
images.append((
(-safe_v, -safe_r15, -safe_r18) if safe_only else (0,),
-face_ratio,
1 if nsfw else 0,
0 if img_name.startswith('pattern_') else 1,
img_name,
(local_img_file, img_filename, meta)
))
images = [item[-1] for item in sorted(images)]
from ..publish.civitai import civitai_upload_images, get_civitai_session, parse_publish_at
def _custom_pc_func(mvid):
return {
"json": {
"modelVersionId": mvid,
"title": post_title,
"tag": None,
"authed": True,
},
"meta": {
"values": {
"tag": ["undefined"]
}
}
}
session = get_civitai_session(session_repo)
post_id = civitai_upload_images(
model_version_id, images,
tags=[*resource.tags, *extra_tags],
model_id=resource.model_id,
pc_func=_custom_pc_func,
session=session,
)
logging.info(f'Publishing post {post_id!r} ...')
resp = srequest(
session, 'POST', 'https://civitai.com/api/trpc/post.update',
json={
"json": {
"id": post_id,
"publishedAt": parse_publish_at('now'),
"authed": True,
},
"meta": {
"values": {
"publishedAt": ["Date"]
}
}
},
headers={'Referer': f'https://civitai.com/models/{resource.model_id}/wizard?step=4'},
)
resp.raise_for_status()
return images
def civitai_review(model: Union[int, str], model_version: Optional[str] = None,
model_creator='narugo1992', rating: int = 5, description_md: Optional[str] = None,
session_repo: str = 'narugo/civitai_session_p1'):
resource = civitai_find_online(model, model_version, creator=model_creator)
from ..publish.civitai import get_civitai_session
session = get_civitai_session(session_repo)
logging.info(f'Try find exist review of model version #{resource.version_id} ...')
_err = None
try: # Add this shit for the 500 of this API (2023-09-14)
resp = srequest(
session, 'GET', 'https://civitai.com/api/trpc/resourceReview.getUserResourceReview',
params={'input': json.dumps({"json": {"modelVersionId": resource.version_id, "authed": True}})},
headers={
'Referer': f'https://civitai.com/posts/create?modelId={resource.model_id}&'
f'modelVersionId={resource.version_id}&'
f'returnUrl=/models/{resource.model_id}?'
f'modelVersionId={resource.version_id}reviewing=true'
},
raise_for_status=False
)
except AssertionError:
_err = True
resp = None
if _err or resp.status_code == 404:
logging.info(f'Creating review for #{resource.version_id} ...')
resp = srequest(
session, 'POST', 'https://civitai.com/api/trpc/resourceReview.create',
json={
"json": {
"modelVersionId": resource.version_id,
"modelId": resource.model_id,
"rating": rating,
"authed": True,
}
},
headers={'Referer': f'https://civitai.com/models/{resource.model_id}/wizard?step=4'}
)
resp.raise_for_status()
else:
if resp is not None:
resp.raise_for_status()
review_id = resp.json()['result']['data']['json']['id']
logging.info(f'Updating review #{review_id}\'s rating ...')
resp = srequest(
session, 'POST', 'https://civitai.com/api/trpc/resourceReview.update',
json={
"json": {
"id": review_id,
"rating": rating,
"details": None,
"authed": True,
},
"meta": {"values": {"details": ["undefined"]}}
},
headers={'Referer': f'https://civitai.com/models/{resource.model_id}/wizard?step=4'}
)
resp.raise_for_status()
if description_md:
logging.info(f'Updating review #{review_id}\'s description ...')
resp = srequest(
session, 'POST', 'https://civitai.com/api/trpc/resourceReview.update',
json={
"json": {
"id": review_id,
"details": markdown2.markdown(textwrap.dedent(description_md)),
'rating': None,
"authed": True,
},
"meta": {"values": {"rating": ["undefined"]}}
},
headers={'Referer': f'https://civitai.com/models/{resource.model_id}/wizard?step=4'}
)
resp.raise_for_status()
_BASE_MODEL_LIST = [
'AIARTCHAN/anidosmixV2',
# 'stablediffusionapi/anything-v5',
# 'Lykon/DreamShaper',
'Meina/Unreal_V4.1',
'digiplay/majicMIX_realistic_v6',
'jzli/XXMix_9realistic-v4',
'stablediffusionapi/abyssorangemix2nsfw',
'AIARTCHAN/expmixLine_v2',
# 'Yntec/CuteYuki2',
'stablediffusionapi/counterfeit-v30',
'stablediffusionapi/flat-2d-animerge',
'redstonehero/cetusmix_v4',
# 'KBlueLeaf/kohaku-v4-rev1.2',
# 'stablediffusionapi/night-sky-yozora-sty',
'Meina/MeinaHentai_V4',
# 'Meina/MeinaPastel_V6',
]
def civitai_auto_review(repository: str, model: Optional[Union[int, str]] = None,
model_version: Optional[str] = None,
model_creator='narugo1992', step: Optional[int] = None,
base_models: Optional[List[str]] = None,
rating: Optional[int] = 5, description_md: Optional[str] = None,
session_repo: str = 'narugo/civitai_session_p1'):
game_name = repository.split('/')[-1].split('_')[-1]
char_name = ' '.join(repository.split('/')[-1].split('_')[:-1])
model = model or try_find_title(char_name, game_name) or \
try_get_title_from_repo(repository) or repository.split('/')[-1]
logging.info(f'Model name on civitai: {model!r}')
from ..publish.export import KNOWN_MODEL_HASHES
hf_fs = get_hf_fs()
model_info = json.loads(hf_fs.read_text(f'{repository}/meta.json'))
dataset_info = model_info['dataset']
# load dataset
ds_size = (384, 512) if not dataset_info or not dataset_info['type'] else dataset_info['type']
with load_dataset_for_character(repository, size=ds_size) as (_, ds_dir):
core_tags, _ = load_tags_from_directory(ds_dir)
all_tags = [
game_name, f"{game_name} {char_name}", char_name,
'female', 'girl', 'character', 'fully-automated', 'random prompt', 'random seed',
*map(_tag_decode, core_tags.keys()),
]
ds_source = LocalSource(ds_dir)
ds_feats = []
for item in tqdm(list(ds_source), desc='Extract Dataset Feature'):
ds_feats.append(ccip_extract_feature(item.image))
all_feats = []
model_results = []
for base_model in (base_models or _BASE_MODEL_LIST):
logging.info(f'Reviewing with {base_model!r} ...')
with TemporaryDirectory() as td:
if KNOWN_MODEL_HASHES.get(base_model):
bm_id, bm_version_id, _ = find_version_id_by_hash(KNOWN_MODEL_HASHES[base_model])
resource = civitai_find_online(bm_id, bm_version_id)
m_name = f'{resource.model_name} - {resource.version_name}'
m_url = f'https://civitai.com/models/{resource.model_id}?modelVersionId={resource.version_id}'
else:
m_name = base_model
m_url = None
draw_with_repo(repository, td, step=step, pretrained_model=base_model)
images = publish_samples_to_civitai(
td, model, model_version,
model_creator=model_creator,
extra_tags=all_tags,
post_title=f"AI Review (Base Model: {m_name})",
session_repo=session_repo
)
images_count = len(images)
gp_feats = []
for local_imgfile, _, _ in tqdm(images, desc='Extract Images Feature'):
gp_feats.append(ccip_extract_feature(local_imgfile))
all_feats.extend(gp_feats)
gp_diffs = ccip_batch_differences([*gp_feats, *ds_feats])[:len(gp_feats), len(gp_feats):]
gp_batch = gp_diffs <= ccip_default_threshold()
scores = gp_batch.mean(axis=1)
losses = gp_diffs.mean(axis=1)
ret = {
'model_name': m_name,
'model_homepage': m_url,
'images': images_count,
'mean_score': scores.mean().item(),
'median_score': np.median(scores).item(),
'mean_loss': losses.mean().item(),
'median_loss': np.median(losses).item(),
}
logging.info(f'Result of model: {ret!r}')
model_results.append(ret)
all_diffs = ccip_batch_differences([*all_feats, *ds_feats])[:len(all_feats), len(all_feats):]
all_batch = all_diffs <= ccip_default_threshold()
all_scores = all_batch.mean(axis=1)
all_losses = all_diffs.mean(axis=1)
all_mean_score = all_scores.mean().item()
all_median_score = np.median(all_scores).item()
all_mean_loss = all_losses.mean().item()
all_median_loss = np.median(all_losses).item()
if rating is not None:
logging.info('Making review ...')
with io.StringIO() as ds:
print('Tested on the following models:', file=ds)
print('', file=ds)
all_total_images = 0
for mr in model_results:
if mr['model_homepage']:
mx = f'[{mr["model_name"]}]({mr["model_homepage"]})'
else:
mx = mr['model_name']
all_total_images += mr['images']
print(
f'When using model {mx}, {plural_word(mr["images"], "image")} in total, '
f'recognition score (mean/median): {mr["mean_score"]:.3f}/{mr["median_score"]:.3f}, '
f'character image loss (mean/median): {mr["mean_loss"]:.4f}/{mr["median_loss"]:.4f}.',
file=ds
)
print('', file=ds)
print(
f'Overall, {plural_word(all_total_images, "image")} in total, '
f'recognition score (mean/median): {all_mean_score:.3f}/{all_median_score:.3f}, '
f'character image loss (mean/median): {all_mean_loss:.4f}/{all_median_loss:.4f}.',
file=ds
)
print('', file=ds)
description_md = description_md or ds.getvalue()
try:
civitai_review(model, model_version, model_creator, rating, description_md, session_repo)
except:
print('This is the description md:')
print(description_md)
raise
|