File size: 3,535 Bytes
c188624
 
cd22fcf
c188624
 
 
 
3285b2f
c188624
 
 
 
 
 
 
 
 
 
 
c8e2bd5
 
fb4de31
3a6124d
c188624
 
 
 
266c60c
c188624
 
 
 
 
 
 
 
3a6124d
083cdef
c188624
 
 
 
 
 
 
 
 
aa06dc2
c46cd83
67fcd16
 
6c53ffd
699c8d1
 
 
24e574d
6be7b29
 
c188624
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
import pandas as pd
import streamlit as st
from transformers import *
from carga_articulos import cargar_articulos
from preprocesamiento_articulos import limpieza_articulos
from entrenamiento_modelo import term_document_matrix, tf_idf_score
from resultados_consulta import resultados_consulta, detalles_resultados
import tensorflow as tf

def crear_indice():
    df=cargar_articulos()
    vocab = limpieza_articulos(df)

    td_matrix=term_document_matrix(df, vocab, 'ID', 'titulo')
    td_idf_matrix=tf_idf_score(td_matrix, df.ID.values)

    td_idf_matrix.to_csv('articulos_indexados.csv') 

def load_qa_model():

    tokenizer = AutoTokenizer.from_pretrained('mrm8488/distill-bert-base-spanish-wwm-cased-finetuned-spa-squad2-es', use_fast="false")
    model = TFDistilBertForQuestionAnswering.from_pretrained("mrm8488/distill-bert-base-spanish-wwm-cased-finetuned-spa-squad2-es", from_pt=True)
    return tokenizer, model

# 4. Use streamlit to create a web app
def main():

    #crear_indice()  

    st.set_page_config(page_title="Buscador de noticias periodicos dominicanos", page_icon="📰")
    st.header('El Repartidor Dominicano')
    st.image('repartidor_periodicos.jpeg', width=150)

    df=cargar_articulos()
    articulos_indexados = pd.read_csv('articulos_indexados.csv')
    articulos_indexados = articulos_indexados.set_index('Unnamed: 0')
    tokenizer, qa_model = load_qa_model()
    

    query = st.text_input(
        "Escribe tus términos de búsqueda o haz una pregunta terminando con el caracter ?:"
    )

    if query:

        if ('?' in query):
           st.write("Contestando a: ", query)
           text='Un texto es una composición de signos codificados en un sistema de escritura que forma una unidad de sentido.' 
           inputs =  tokenizer(query, text, return_tensors='tf')
           #outputs = qa_model(input_ids=inputs['input_ids'], attention_mask=inputs['attention_mask'])
           outputs = qa_model(input_ids=inputs['input_ids']) 
           loss = outputs.loss
           answer_start_index = int(tf.math.argmax(outputs.start_logits, axis=-1)[0])
           answer_end_index = int(tf.math.argmax(outputs.end_logits, axis=-1)[0])
           predict_answer_tokens = inputs.input_ids[0, answer_start_index : answer_end_index + 1] 
           answer=tokenizer.decode(predict_answer_tokens)
           ans = answer + str(loss) 
           st.info(ans)     

        else:    

            st.write("Buscando: ", query)
            result = resultados_consulta(df,articulos_indexados, query)

            if result.empty:
                st.info("No se encontraron artículos para la búsqueda solicitada")

            else:
                #st.write(detalles_resultados(df,result), unsafe_allow_html=True)
                df_results=detalles_resultados(df,result)
                N_cards_per_row = 1
                for n_row, row in df_results.reset_index().iterrows():
                    i = n_row%N_cards_per_row
                    if i==0:
                        st.write("---")
                        cols = st.columns(N_cards_per_row, gap="large")
                    # draw the card
                    with cols[n_row%N_cards_per_row]:
                        st.caption(f"{row['feed'].strip()} - {row['seccion'].strip()} - {row['fecha'].strip()} ")
                        st.markdown(f"**{row['titulo'].strip()}**")
                        st.markdown(f"{row['resumen'].strip()}")
                        st.markdown(f"{row['link']}")
if __name__ == "__main__":
    main()