File size: 35,448 Bytes
d6d7648
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
# Copyright 2023 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from dataclasses import dataclass
from typing import Any, Dict, List, Optional, Tuple, Union
import os
import json
from einops import repeat

import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.utils.checkpoint

from diffusers.configuration_utils import ConfigMixin, register_to_config
from diffusers.loaders import UNet2DConditionLoadersMixin
from diffusers.utils import BaseOutput, logging
from diffusers.models.attention_processor import AttentionProcessor, AttnProcessor
from diffusers.models.embeddings import GaussianFourierProjection, TextTimeEmbedding, TimestepEmbedding, Timesteps
from diffusers.models.modeling_utils import ModelMixin

from unet_blocks import (
	all_modules,
	get_down_block,
	get_up_block,
	get_mid_block,
)

from unet_utils import FFInflatedConv3d

logger = logging.get_logger(__name__)  # pylint: disable=invalid-name


@dataclass
class UNet3DConditionOutput(BaseOutput):
	"""
	Args:
		sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
			Hidden states conditioned on `encoder_hidden_states` input. Output of last layer of model.
	"""
	
	sample: torch.FloatTensor


class AudioUNet3DConditionModel(ModelMixin, ConfigMixin, UNet2DConditionLoadersMixin):
	r"""
	UNet2DConditionModel is a conditional 2D UNet model that takes in a noisy sample, conditional state, and a timestep
	and returns sample shaped output.

	This model inherits from [`ModelMixin`]. Check the superclass documentation for the generic methods the library
	implements for all the models (such as downloading or saving, etc.)

	Parameters:
		sample_size (`int` or `Tuple[int, int]`, *optional*, defaults to `None`):
			Height and width of input/output sample.
		in_channels (`int`, *optional*, defaults to 4): The number of channels in the input sample.
		out_channels (`int`, *optional*, defaults to 4): The number of channels in the output.
		center_input_sample (`bool`, *optional*, defaults to `False`): Whether to center the input sample.
		flip_sin_to_cos (`bool`, *optional*, defaults to `False`):
			Whether to flip the sin to cos in the time embedding.
		freq_shift (`int`, *optional*, defaults to 0): The frequency shift to apply to the time embedding.
		down_block_types (`Tuple[str]`, *optional*, defaults to `("CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D")`):
			The tuple of downsample blocks to use.
		mid_block_type (`str`, *optional*, defaults to `"UNetMidBlock2DCrossAttn"`):
			The mid block type. Choose from `UNetMidBlock2DCrossAttn` or `UNetMidBlock2DSimpleCrossAttn`, will skip the
			mid block layer if `None`.
		up_block_types (`Tuple[str]`, *optional*, defaults to `("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D",)`):
			The tuple of upsample blocks to use.
		only_cross_attention(`bool` or `Tuple[bool]`, *optional*, default to `False`):
			Whether to include self-attention in the basic transformer blocks, see
			[`~models.attention.BasicTransformerBlock`].
		block_out_channels (`Tuple[int]`, *optional*, defaults to `(320, 640, 1280, 1280)`):
			The tuple of output channels for each block.
		layers_per_block (`int`, *optional*, defaults to 2): The number of layers per block.
		downsample_padding (`int`, *optional*, defaults to 1): The padding to use for the downsampling convolution.
		mid_block_scale_factor (`float`, *optional*, defaults to 1.0): The scale factor to use for the mid block.
		act_fn (`str`, *optional*, defaults to `"silu"`): The activation function to use.
		norm_num_groups (`int`, *optional*, defaults to 32): The number of groups to use for the normalization.
			If `None`, it will skip the normalization and activation layers in post-processing
		norm_eps (`float`, *optional*, defaults to 1e-5): The epsilon to use for the normalization.
		cross_attention_dim (`int` or `Tuple[int]`, *optional*, defaults to 1280):
			The dimension of the cross attention features.
		encoder_hid_dim (`int`, *optional*, defaults to None):
			If given, `encoder_hidden_states` will be projected from this dimension to `cross_attention_dim`.
		attention_head_dim (`int`, *optional*, defaults to 8): The dimension of the attention heads.
		resnet_time_scale_shift (`str`, *optional*, defaults to `"default"`): Time scale shift config
			for resnet blocks, see [`~models.resnet.ResnetBlock2D`]. Choose from `default` or `scale_shift`.
		class_embed_type (`str`, *optional*, defaults to None):
			The type of class embedding to use which is ultimately summed with the time embeddings. Choose from `None`,
			`"timestep"`, `"identity"`, `"projection"`, or `"simple_projection"`.
		addition_embed_type (`str`, *optional*, defaults to None):
			Configures an optional embedding which will be summed with the time embeddings. Choose from `None` or
			"text". "text" will use the `TextTimeEmbedding` layer.
		num_class_embeds (`int`, *optional*, defaults to None):
			Input dimension of the learnable embedding matrix to be projected to `time_embed_dim`, when performing
			class conditioning with `class_embed_type` equal to `None`.
		time_embedding_type (`str`, *optional*, default to `positional`):
			The type of position embedding to use for timesteps. Choose from `positional` or `fourier`.
		time_embedding_dim (`int`, *optional*, default to `None`):
			An optional override for the dimension of the projected time embedding.
		time_embedding_act_fn (`str`, *optional*, default to `None`):
			Optional activation function to use on the time embeddings only one time before they as passed to the rest
			of the unet. Choose from `silu`, `mish`, `gelu`, and `swish`.
		timestep_post_act (`str, *optional*, default to `None`):
			The second activation function to use in timestep embedding. Choose from `silu`, `mish` and `gelu`.
		time_cond_proj_dim (`int`, *optional*, default to `None`):
			The dimension of `cond_proj` layer in timestep embedding.
		conv_in_kernel (`int`, *optional*, default to `3`): The kernel size of `conv_in` layer.
		conv_out_kernel (`int`, *optional*, default to `3`): The kernel size of `conv_out` layer.
		projection_class_embeddings_input_dim (`int`, *optional*): The dimension of the `class_labels` input when
			using the "projection" `class_embed_type`. Required when using the "projection" `class_embed_type`.
		class_embeddings_concat (`bool`, *optional*, defaults to `False`): Whether to concatenate the time
			embeddings with the class embeddings.
		mid_block_only_cross_attention (`bool`, *optional*, defaults to `None`):
			Whether to use cross attention with the mid block when using the `UNetMidBlock2DSimpleCrossAttn`. If
			`only_cross_attention` is given as a single boolean and `mid_block_only_cross_attention` is None, the
			`only_cross_attention` value will be used as the value for `mid_block_only_cross_attention`. Else, it will
			default to `False`.
	"""
	
	_supports_gradient_checkpointing = True
	
	@register_to_config
	def __init__(
			self,
			sample_size: Optional[int] = None,
			in_channels: int = 4,
			out_channels: int = 4,
			center_input_sample: bool = False,
			flip_sin_to_cos: bool = True,
			freq_shift: int = 0,
			down_block_types: Tuple[str] = (
					"FFSpatioAudioTempCrossAttnDownBlock3D",
					"FFSpatioAudioTempCrossAttnDownBlock3D",
					"FFSpatioAudioTempCrossAttnDownBlock3D",
					"FFSpatioTempResDownBlock3D",
			),
			mid_block_type: Optional[str] = "FFSpatioAudioTempCrossAttnUNetMidBlock3D",
			up_block_types: Tuple[str] = (
					"FFSpatioTempResUpBlock3D",
					"FFSpatioAudioTempCrossAttnUpBlock3D",
					"FFSpatioAudioTempCrossAttnUpBlock3D",
					"FFSpatioAudioTempCrossAttnUpBlock3D"
			),
			only_cross_attention: Union[bool, Tuple[bool]] = False,
			block_out_channels: Tuple[int] = (320, 640, 1280, 1280),
			layers_per_block: Union[int, Tuple[int]] = 2,
			downsample_padding: int = 1,
			mid_block_scale_factor: float = 1,
			act_fn: str = "silu",
			norm_num_groups: Optional[int] = 32,
			norm_eps: float = 1e-5,
			cross_attention_dim: Union[int, Tuple[int]] = 1280,
			encoder_hid_dim: Optional[int] = None,
			attention_head_dim: Union[int, Tuple[int]] = 8,
			dual_cross_attention: bool = False,
			use_linear_projection: bool = False,
			class_embed_type: Optional[str] = None,
			addition_embed_type: Optional[str] = None,
			num_class_embeds: Optional[int] = None,
			upcast_attention: bool = False,
			resnet_time_scale_shift: str = "default",
			resnet_skip_time_act: bool = False,
			resnet_out_scale_factor: int = 1.0,
			time_embedding_type: str = "positional",
			time_embedding_dim: Optional[int] = None,
			time_embedding_act_fn: Optional[str] = None,
			timestep_post_act: Optional[str] = None,
			time_cond_proj_dim: Optional[int] = None,
			conv_in_kernel: int = 3,
			conv_out_kernel: int = 3,
			projection_class_embeddings_input_dim: Optional[int] = None,
			class_embeddings_concat: bool = False,
			mid_block_only_cross_attention: Optional[bool] = None,
			cross_attention_norm: Optional[str] = None,
			addition_embed_type_num_heads=64,
			audio_cross_attention_dim: int = 768,
	):
		super().__init__()
		
		self.sample_size = sample_size
		
		# Check inputs
		if len(down_block_types) != len(up_block_types):
			raise ValueError(
				f"Must provide the same number of `down_block_types` as `up_block_types`. `down_block_types`: {down_block_types}. `up_block_types`: {up_block_types}."
			)
		
		if len(block_out_channels) != len(down_block_types):
			raise ValueError(
				f"Must provide the same number of `block_out_channels` as `down_block_types`. `block_out_channels`: {block_out_channels}. `down_block_types`: {down_block_types}."
			)
		
		if not isinstance(only_cross_attention, bool) and len(only_cross_attention) != len(down_block_types):
			raise ValueError(
				f"Must provide the same number of `only_cross_attention` as `down_block_types`. `only_cross_attention`: {only_cross_attention}. `down_block_types`: {down_block_types}."
			)
		
		if not isinstance(attention_head_dim, int) and len(attention_head_dim) != len(down_block_types):
			raise ValueError(
				f"Must provide the same number of `attention_head_dim` as `down_block_types`. `attention_head_dim`: {attention_head_dim}. `down_block_types`: {down_block_types}."
			)
		
		if isinstance(cross_attention_dim, list) and len(cross_attention_dim) != len(down_block_types):
			raise ValueError(
				f"Must provide the same number of `cross_attention_dim` as `down_block_types`. `cross_attention_dim`: {cross_attention_dim}. `down_block_types`: {down_block_types}."
			)
		
		if not isinstance(layers_per_block, int) and len(layers_per_block) != len(down_block_types):
			raise ValueError(
				f"Must provide the same number of `layers_per_block` as `down_block_types`. `layers_per_block`: {layers_per_block}. `down_block_types`: {down_block_types}."
			)
		
		# input
		conv_in_padding = (conv_in_kernel - 1) // 2
		self.conv_in = FFInflatedConv3d(
			in_channels, block_out_channels[0], kernel_size=conv_in_kernel, padding=conv_in_padding
		)
		
		# time
		if time_embedding_type == "fourier":
			time_embed_dim = time_embedding_dim or block_out_channels[0] * 2
			if time_embed_dim % 2 != 0:
				raise ValueError(f"`time_embed_dim` should be divisible by 2, but is {time_embed_dim}.")
			self.time_proj = GaussianFourierProjection(
				time_embed_dim // 2, set_W_to_weight=False, log=False, flip_sin_to_cos=flip_sin_to_cos
			)
			timestep_input_dim = time_embed_dim
		elif time_embedding_type == "positional":
			time_embed_dim = time_embedding_dim or block_out_channels[0] * 4
			
			self.time_proj = Timesteps(block_out_channels[0], flip_sin_to_cos, freq_shift)
			timestep_input_dim = block_out_channels[0]
		else:
			raise ValueError(
				f"{time_embedding_type} does not exist. Please make sure to use one of `fourier` or `positional`."
			)
		
		self.time_embedding = TimestepEmbedding(
			timestep_input_dim,
			time_embed_dim,
			act_fn=act_fn,
			post_act_fn=timestep_post_act,
			cond_proj_dim=time_cond_proj_dim,
		)
		
		if encoder_hid_dim is not None:
			self.encoder_hid_proj = nn.Linear(encoder_hid_dim, cross_attention_dim)
		else:
			self.encoder_hid_proj = None
		
		# class embedding
		if class_embed_type is None and num_class_embeds is not None:
			self.class_embedding = nn.Embedding(num_class_embeds, time_embed_dim)
		elif class_embed_type == "timestep":
			self.class_embedding = TimestepEmbedding(timestep_input_dim, time_embed_dim, act_fn=act_fn)
		elif class_embed_type == "identity":
			self.class_embedding = nn.Identity(time_embed_dim, time_embed_dim)
		elif class_embed_type == "projection":
			if projection_class_embeddings_input_dim is None:
				raise ValueError(
					"`class_embed_type`: 'projection' requires `projection_class_embeddings_input_dim` be set"
				)
			# The projection `class_embed_type` is the same as the timestep `class_embed_type` except
			# 1. the `class_labels` inputs are not first converted to sinusoidal embeddings
			# 2. it projects from an arbitrary input dimension.
			#
			# Note that `TimestepEmbedding` is quite general, being mainly linear layers and activations.
			# When used for embedding actual timesteps, the timesteps are first converted to sinusoidal embeddings.
			# As a result, `TimestepEmbedding` can be passed arbitrary vectors.
			self.class_embedding = TimestepEmbedding(projection_class_embeddings_input_dim, time_embed_dim)
		elif class_embed_type == "simple_projection":
			if projection_class_embeddings_input_dim is None:
				raise ValueError(
					"`class_embed_type`: 'simple_projection' requires `projection_class_embeddings_input_dim` be set"
				)
			self.class_embedding = nn.Linear(projection_class_embeddings_input_dim, time_embed_dim)
		else:
			self.class_embedding = None
		
		if addition_embed_type == "text":
			if encoder_hid_dim is not None:
				text_time_embedding_from_dim = encoder_hid_dim
			else:
				text_time_embedding_from_dim = cross_attention_dim
			
			self.add_embedding = TextTimeEmbedding(
				text_time_embedding_from_dim, time_embed_dim, num_heads=addition_embed_type_num_heads
			)
		elif addition_embed_type is not None:
			raise ValueError(f"addition_embed_type: {addition_embed_type} must be None or 'text'.")
		
		if time_embedding_act_fn is None:
			self.time_embed_act = None
		elif time_embedding_act_fn == "swish":
			self.time_embed_act = lambda x: F.silu(x)
		elif time_embedding_act_fn == "mish":
			self.time_embed_act = nn.Mish()
		elif time_embedding_act_fn == "silu":
			self.time_embed_act = nn.SiLU()
		elif time_embedding_act_fn == "gelu":
			self.time_embed_act = nn.GELU()
		else:
			raise ValueError(f"Unsupported activation function: {time_embedding_act_fn}")
		
		self.down_blocks = nn.ModuleList([])
		self.up_blocks = nn.ModuleList([])
		
		if isinstance(only_cross_attention, bool):
			if mid_block_only_cross_attention is None:
				mid_block_only_cross_attention = only_cross_attention
			
			only_cross_attention = [only_cross_attention] * len(down_block_types)
		
		if mid_block_only_cross_attention is None:
			mid_block_only_cross_attention = False
		
		if isinstance(attention_head_dim, int):
			attention_head_dim = (attention_head_dim,) * len(down_block_types)
		
		if isinstance(cross_attention_dim, int):
			cross_attention_dim = (cross_attention_dim,) * len(down_block_types)
		
		if isinstance(layers_per_block, int):
			layers_per_block = [layers_per_block] * len(down_block_types)
		
		if class_embeddings_concat:
			# The time embeddings are concatenated with the class embeddings. The dimension of the
			# time embeddings passed to the down, middle, and up blocks is twice the dimension of the
			# regular time embeddings
			blocks_time_embed_dim = time_embed_dim * 2
		else:
			blocks_time_embed_dim = time_embed_dim
		
		# down
		output_channel = block_out_channels[0]
		for i, down_block_type in enumerate(down_block_types):
			input_channel = output_channel
			output_channel = block_out_channels[i]
			is_final_block = i == len(block_out_channels) - 1
			
			down_block = get_down_block(
				down_block_type,
				num_layers=layers_per_block[i],
				in_channels=input_channel,
				out_channels=output_channel,
				temb_channels=blocks_time_embed_dim,
				add_downsample=not is_final_block,
				resnet_eps=norm_eps,
				resnet_act_fn=act_fn,
				resnet_groups=norm_num_groups,
				cross_attention_dim=cross_attention_dim[i],
				attn_num_head_channels=attention_head_dim[i],
				downsample_padding=downsample_padding,
				dual_cross_attention=dual_cross_attention,
				use_linear_projection=use_linear_projection,
				only_cross_attention=only_cross_attention[i],
				upcast_attention=upcast_attention,
				resnet_time_scale_shift=resnet_time_scale_shift,
				audio_cross_attention_dim=audio_cross_attention_dim
			)
			self.down_blocks.append(down_block)
		
		# mid
		if mid_block_type is None:
			self.mid_block = None
		else:
			self.mid_block = get_mid_block(
				mid_block_type=mid_block_type,
				in_channels=block_out_channels[-1],
				temb_channels=blocks_time_embed_dim,
				resnet_eps=norm_eps,
				resnet_act_fn=act_fn,
				output_scale_factor=mid_block_scale_factor,
				resnet_time_scale_shift=resnet_time_scale_shift,
				cross_attention_dim=cross_attention_dim[-1],
				attn_num_head_channels=attention_head_dim[-1],
				resnet_groups=norm_num_groups,
				dual_cross_attention=dual_cross_attention,
				use_linear_projection=use_linear_projection,
				upcast_attention=upcast_attention,
				audio_cross_attention_dim=audio_cross_attention_dim
			)
		
		# count how many layers upsample the images
		self.num_upsamplers = 0
		
		# up
		reversed_block_out_channels = list(reversed(block_out_channels))
		reversed_attention_head_dim = list(reversed(attention_head_dim))
		reversed_layers_per_block = list(reversed(layers_per_block))
		reversed_cross_attention_dim = list(reversed(cross_attention_dim))
		only_cross_attention = list(reversed(only_cross_attention))
		
		output_channel = reversed_block_out_channels[0]
		for i, up_block_type in enumerate(up_block_types):
			is_final_block = i == len(block_out_channels) - 1
			
			prev_output_channel = output_channel
			output_channel = reversed_block_out_channels[i]
			input_channel = reversed_block_out_channels[min(i + 1, len(block_out_channels) - 1)]
			
			# add upsample block for all BUT final layer
			if not is_final_block:
				add_upsample = True
				self.num_upsamplers += 1
			else:
				add_upsample = False
			
			up_block = get_up_block(
				up_block_type,
				num_layers=reversed_layers_per_block[i] + 1,
				in_channels=input_channel,
				out_channels=output_channel,
				prev_output_channel=prev_output_channel,
				temb_channels=blocks_time_embed_dim,
				add_upsample=add_upsample,
				resnet_eps=norm_eps,
				resnet_act_fn=act_fn,
				resnet_groups=norm_num_groups,
				cross_attention_dim=reversed_cross_attention_dim[i],
				attn_num_head_channels=reversed_attention_head_dim[i],
				dual_cross_attention=dual_cross_attention,
				use_linear_projection=use_linear_projection,
				only_cross_attention=only_cross_attention[i],
				upcast_attention=upcast_attention,
				resnet_time_scale_shift=resnet_time_scale_shift,
				audio_cross_attention_dim=audio_cross_attention_dim
			)
			self.up_blocks.append(up_block)
		
		# out
		if norm_num_groups is not None:
			self.conv_norm_out = nn.GroupNorm(
				num_channels=block_out_channels[0], num_groups=norm_num_groups, eps=norm_eps
			)
			
			if act_fn == "swish":
				self.conv_act = lambda x: F.silu(x)
			elif act_fn == "mish":
				self.conv_act = nn.Mish()
			elif act_fn == "silu":
				self.conv_act = nn.SiLU()
			elif act_fn == "gelu":
				self.conv_act = nn.GELU()
			else:
				raise ValueError(f"Unsupported activation function: {act_fn}")
		
		else:
			self.conv_norm_out = None
			self.conv_act = None
		
		conv_out_padding = (conv_out_kernel - 1) // 2
		self.conv_out = FFInflatedConv3d(
			block_out_channels[0], out_channels, kernel_size=conv_out_kernel, padding=conv_out_padding
		)
	
	@property
	def attn_processors(self) -> Dict[str, AttentionProcessor]:
		r"""
		Returns:
			`dict` of attention processors: A dictionary containing all attention processors used in the model with
			indexed by its weight name.
		"""
		# set recursively
		processors = {}
		
		def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]):
			if hasattr(module, "set_processor"):
				processors[f"{name}.processor"] = module.processor
			
			for sub_name, child in module.named_children():
				fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)
			
			return processors
		
		for name, module in self.named_children():
			fn_recursive_add_processors(name, module, processors)
		
		return processors
	
	def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]):
		r"""
		Parameters:
			`processor (`dict` of `AttentionProcessor` or `AttentionProcessor`):
				The instantiated processor class or a dictionary of processor classes that will be set as the processor
				of **all** `Attention` layers.
			In case `processor` is a dict, the key needs to define the path to the corresponding cross attention processor. This is strongly recommended when setting trainable attention processors.:

		"""
		count = len(self.attn_processors.keys())
		
		if isinstance(processor, dict) and len(processor) != count:
			raise ValueError(
				f"A dict of processors was passed, but the number of processors {len(processor)} does not match the"
				f" number of attention layers: {count}. Please make sure to pass {count} processor classes."
			)
		
		def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor):
			if hasattr(module, "set_processor"):
				if not isinstance(processor, dict):
					module.set_processor(processor)
				else:
					module.set_processor(processor.pop(f"{name}.processor"))
			
			for sub_name, child in module.named_children():
				fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)
		
		for name, module in self.named_children():
			fn_recursive_attn_processor(name, module, processor)
	
	def set_default_attn_processor(self):
		"""
		Disables custom attention processors and sets the default attention implementation.
		"""
		self.set_attn_processor(AttnProcessor())
	
	def set_attention_slice(self, slice_size):
		r"""
		Enable sliced attention computation.

		When this option is enabled, the attention module will split the input tensor in slices, to compute attention
		in several steps. This is useful to save some memory in exchange for a small speed decrease.

		Args:
			slice_size (`str` or `int` or `list(int)`, *optional*, defaults to `"auto"`):
				When `"auto"`, halves the input to the attention heads, so attention will be computed in two steps. If
				`"max"`, maximum amount of memory will be saved by running only one slice at a time. If a number is
				provided, uses as many slices as `attention_head_dim // slice_size`. In this case, `attention_head_dim`
				must be a multiple of `slice_size`.
		"""
		sliceable_head_dims = []
		
		def fn_recursive_retrieve_sliceable_dims(module: torch.nn.Module):
			if hasattr(module, "set_attention_slice"):
				sliceable_head_dims.append(module.sliceable_head_dim)
			
			for child in module.children():
				fn_recursive_retrieve_sliceable_dims(child)
		
		# retrieve number of attention layers
		for module in self.children():
			fn_recursive_retrieve_sliceable_dims(module)
		
		num_sliceable_layers = len(sliceable_head_dims)
		
		if slice_size == "auto":
			# half the attention head size is usually a good trade-off between
			# speed and memory
			slice_size = [dim // 2 for dim in sliceable_head_dims]
		elif slice_size == "max":
			# make smallest slice possible
			slice_size = num_sliceable_layers * [1]
		
		slice_size = num_sliceable_layers * [slice_size] if not isinstance(slice_size, list) else slice_size
		
		if len(slice_size) != len(sliceable_head_dims):
			raise ValueError(
				f"You have provided {len(slice_size)}, but {self.config} has {len(sliceable_head_dims)} different"
				f" attention layers. Make sure to match `len(slice_size)` to be {len(sliceable_head_dims)}."
			)
		
		for i in range(len(slice_size)):
			size = slice_size[i]
			dim = sliceable_head_dims[i]
			if size is not None and size > dim:
				raise ValueError(f"size {size} has to be smaller or equal to {dim}.")
		
		# Recursively walk through all the children.
		# Any children which exposes the set_attention_slice method
		# gets the message
		def fn_recursive_set_attention_slice(module: torch.nn.Module, slice_size: List[int]):
			if hasattr(module, "set_attention_slice"):
				module.set_attention_slice(slice_size.pop())
			
			for child in module.children():
				fn_recursive_set_attention_slice(child, slice_size)
		
		reversed_slice_size = list(reversed(slice_size))
		for module in self.children():
			fn_recursive_set_attention_slice(module, reversed_slice_size)
	
	def _set_gradient_checkpointing(self, module, value=False):
		if isinstance(module, tuple(all_modules)):
			module.gradient_checkpointing = value
	
	def forward(
			self,
			sample: torch.FloatTensor,
			timestep: Union[torch.Tensor, float, int],
			encoder_hidden_states: torch.Tensor,
			audio_encoder_hidden_states: Optional[torch.Tensor] = None,
			class_labels: Optional[torch.Tensor] = None,
			timestep_cond: Optional[torch.Tensor] = None,
			attention_mask: Optional[torch.Tensor] = None,
			audio_attention_mask: Optional[torch.Tensor] = None,
			cross_attention_kwargs: Optional[Dict[str, Any]] = None,
			down_block_additional_residuals: Optional[Tuple[torch.Tensor]] = None,
			mid_block_additional_residual: Optional[torch.Tensor] = None,
			return_dict: bool = True,
	) -> Union[UNet3DConditionOutput, Tuple]:
		r"""
		Args:
			sample (`torch.FloatTensor`): (batch, channel, frame, height, width) noisy inputs tensor
			timestep (`torch.FloatTensor` or `float` or `int`): (batch) timesteps
			encoder_hidden_states (`torch.FloatTensor`): (batch, sequence_length, feature_dim) encoder hidden states
			return_dict (`bool`, *optional*, defaults to `True`):
				Whether or not to return a [`models.unet_2d_condition.UNet2DConditionOutput`] instead of a plain tuple.
			cross_attention_kwargs (`dict`, *optional*):
				A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
				`self.processor` in
				[diffusers.cross_attention](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/cross_attention.py).

		Returns:
			[`~models.unet_2d_condition.UNet2DConditionOutput`] or `tuple`:
			[`~models.unet_2d_condition.UNet2DConditionOutput`] if `return_dict` is True, otherwise a `tuple`. When
			returning a tuple, the first element is the sample tensor.
		"""
		assert sample.ndim == 5, sample.size()
		video_length = sample.shape[2]
		
		# By default samples have to be AT least a multiple of the overall upsampling factor.
		# The overall upsampling factor is equal to 2 ** (# num of upsampling layers).
		# However, the upsampling interpolation output size can be forced to fit any upsampling size
		# on the fly if necessary.
		default_overall_up_factor = 2 ** self.num_upsamplers
		
		# upsample size should be forwarded when sample is not a multiple of `default_overall_up_factor`
		forward_upsample_size = False
		upsample_size = None
		
		if any(s % default_overall_up_factor != 0 for s in sample.shape[-2:]):
			logger.info("Forward upsample size to force interpolation output size.")
			forward_upsample_size = True
		
		# prepare attention_mask
		if attention_mask is not None:
			attention_mask = (1 - attention_mask.to(sample.dtype)) * -10000.0
			attention_mask = attention_mask.unsqueeze(1)
		
		# 0. center input if necessary
		if self.config.center_input_sample:
			sample = 2 * sample - 1.0
		
		# 1. time
		timesteps = timestep
		if not torch.is_tensor(timesteps):
			# TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can
			# This would be a good case for the `match` statement (Python 3.10+)
			is_mps = sample.device.type == "mps"
			if isinstance(timestep, float):
				dtype = torch.float32 if is_mps else torch.float64
			else:
				dtype = torch.int32 if is_mps else torch.int64
			timesteps = torch.tensor([timesteps], dtype=dtype, device=sample.device)
		elif len(timesteps.shape) == 0:
			timesteps = timesteps[None].to(sample.device)
		
		# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
		timesteps = timesteps.expand(sample.shape[0])
		
		t_emb = self.time_proj(timesteps)
		
		# `Timesteps` does not contain any weights and will always return f32 tensors
		# but time_embedding might actually be running in fp16. so we need to cast here.
		# there might be better ways to encapsulate this.
		t_emb = t_emb.to(dtype=self.dtype)
		
		emb = self.time_embedding(t_emb, timestep_cond)
		emb = repeat(emb, "b c -> b f c", f=video_length)
		
		if self.class_embedding is not None:
			if class_labels is None:
				raise ValueError("class_labels should be provided when num_class_embeds > 0")
			
			if self.config.class_embed_type == "timestep":
				class_labels = self.time_proj(class_labels)
				
				# `Timesteps` does not contain any weights and will always return f32 tensors
				# there might be better ways to encapsulate this.
				class_labels = class_labels.to(dtype=sample.dtype)
			
			class_emb = self.class_embedding(class_labels).to(dtype=self.dtype)
			
			if self.config.class_embeddings_concat:
				emb = torch.cat([emb, class_emb], dim=-1)
			else:
				emb = emb + class_emb
		
		if self.config.addition_embed_type == "text":
			aug_emb = self.add_embedding(encoder_hidden_states)
			emb = emb + aug_emb
		
		if self.time_embed_act is not None:
			emb = self.time_embed_act(emb)
		
		if self.encoder_hid_proj is not None:
			encoder_hidden_states = self.encoder_hid_proj(encoder_hidden_states)
		
		# 2. pre-process
		sample = self.conv_in(sample)
		
		# 3. down
		down_block_res_samples = (sample,)
		for downsample_block in self.down_blocks:
			if hasattr(downsample_block, "has_cross_attention") and downsample_block.has_cross_attention:
				sample, res_samples = downsample_block(
					hidden_states=sample,
					temb=emb,
					encoder_hidden_states=encoder_hidden_states,
					audio_encoder_hidden_states=audio_encoder_hidden_states,
					attention_mask=attention_mask,
					audio_attention_mask=audio_attention_mask,
					cross_attention_kwargs=cross_attention_kwargs,
				)
			else:
				sample, res_samples = downsample_block(
					hidden_states=sample, temb=emb
				)
			
			down_block_res_samples += res_samples
		
		if down_block_additional_residuals is not None:
			new_down_block_res_samples = ()
			
			for down_block_res_sample, down_block_additional_residual in zip(
					down_block_res_samples, down_block_additional_residuals
			):
				down_block_res_sample = down_block_res_sample + down_block_additional_residual
				new_down_block_res_samples += (down_block_res_sample,)
			
			down_block_res_samples = new_down_block_res_samples
		
		# 4. mid
		if self.mid_block is not None:
			sample = self.mid_block(
				sample,
				emb,
				encoder_hidden_states=encoder_hidden_states,
				audio_encoder_hidden_states=audio_encoder_hidden_states,
				attention_mask=attention_mask,
				audio_attention_mask=audio_attention_mask,
				cross_attention_kwargs=cross_attention_kwargs,
			)
		
		if mid_block_additional_residual is not None:
			sample = sample + mid_block_additional_residual
		
		# 5. up
		for i, upsample_block in enumerate(self.up_blocks):
			is_final_block = i == len(self.up_blocks) - 1
			
			res_samples = down_block_res_samples[-len(upsample_block.resnets):]
			down_block_res_samples = down_block_res_samples[: -len(upsample_block.resnets)]
			
			# if we have not reached the final block and need to forward the
			# upsample size, we do it here
			if not is_final_block and forward_upsample_size:
				upsample_size = down_block_res_samples[-1].shape[2:]
			
			if hasattr(upsample_block, "has_cross_attention") and upsample_block.has_cross_attention:
				sample = upsample_block(
					hidden_states=sample,
					temb=emb,
					res_hidden_states_tuple=res_samples,
					encoder_hidden_states=encoder_hidden_states,
					audio_encoder_hidden_states=audio_encoder_hidden_states,
					cross_attention_kwargs=cross_attention_kwargs,
					upsample_size=upsample_size,
					attention_mask=attention_mask,
					audio_attention_mask=audio_attention_mask,
				)
			else:
				sample = upsample_block(
					hidden_states=sample, temb=emb, res_hidden_states_tuple=res_samples, upsample_size=upsample_size
				)
		
		# 6. post-process
		if self.conv_norm_out:
			sample = self.conv_norm_out(sample)
			sample = self.conv_act(sample)
		sample = self.conv_out(sample)
		
		if not return_dict:
			return (sample,)
		
		return UNet3DConditionOutput(sample=sample)
	
	@classmethod
	def from_pretrained_2d(cls, config3d, pretrained_model_path, subfolder=None):
		# 1. Build 3D config from pretrained 2D config
		if subfolder is not None:
			pretrained_model_path = os.path.join(pretrained_model_path, subfolder)
		config2d_file = os.path.join(pretrained_model_path, 'config.json')
		assert os.path.isfile(config2d_file), f"{config2d_file} does not exist"
		
		with open(config2d_file, "r") as f:
			config2d = json.load(f)
		config2d["_class_name"] = cls.__name__
		config2d["down_block_types"] = tuple(config3d["down_block_types"])
		config2d["up_block_types"] = tuple(config3d["up_block_types"])
		config2d["mid_block_type"] = config3d["mid_block_type"]
		if "cross_attention_dim" in config3d: config2d["cross_attention_dim"] = config3d["cross_attention_dim"]
		if "audio_cross_attention_dim" in config3d: config2d["audio_cross_attention_dim"] = config3d[
			"audio_cross_attention_dim"]
		
		# 2. Build 3D model from updated 3D config
		model = cls.from_config(config2d)
		
		# 3. Load in weights from pretrained 2D nets
		from diffusers.utils import WEIGHTS_NAME
		model2d_file = os.path.join(pretrained_model_path, WEIGHTS_NAME)
		assert os.path.isfile(model2d_file), f"{model2d_file} does not exist"
		pretrained_2d_state_dict = torch.load(model2d_file, map_location="cpu")
		
		# Add new 3D weights into pretrained 2d state_dict, to be compatible with 3D model
		for k, v in model.state_dict().items():
			# all '_temp' temporal weights are initialized by pretrained 2D models
			if '_temp' in k:
				pretrained_2d_state_dict.update({k: v})
			# add new weights into pretrained 2D state_dict
			elif k not in pretrained_2d_state_dict:
				pretrained_2d_state_dict.update({k: v})
			# if weights has different shape, replace it
			elif pretrained_2d_state_dict[k].shape != v.shape:
				pretrained_2d_state_dict.update({k: v})
		model.load_state_dict(pretrained_2d_state_dict)
		
		return model