File size: 10,954 Bytes
d6d7648
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
# Adapted from https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention.py

from dataclasses import dataclass
from typing import Optional
from einops import rearrange

import torch
from torch import nn

from diffusers.configuration_utils import ConfigMixin, register_to_config
from diffusers.models.modeling_utils import ModelMixin
from diffusers.utils import BaseOutput
from diffusers.utils.import_utils import is_xformers_available
from diffusers.models.attention import Attention
from diffusers.models.attention import FeedForward, AdaLayerNorm, AdaLayerNormZero
from diffusers.models.embeddings import Timesteps, TimestepEmbedding

from unet_utils import FFAttention


@dataclass
class SpatioTempTransformer3DModelOutput(BaseOutput):
	sample: torch.Tensor


if is_xformers_available():
	import xformers
	import xformers.ops
else:
	xformers = None


class FFSpatioTempTransformer3DModel(ModelMixin, ConfigMixin):
	@register_to_config
	def __init__(
			self,
			num_attention_heads: int = 16,
			attention_head_dim: int = 88,
			in_channels: Optional[int] = None,
			num_layers: int = 1,
			dropout: float = 0.0,
			norm_num_groups: int = 32,
			cross_attention_dim: Optional[int] = None,
			attention_bias: bool = False,
			activation_fn: str = "geglu",
			num_embeds_ada_norm: Optional[int] = None,
			use_linear_projection: bool = False,
			only_cross_attention: bool = False,
			upcast_attention: bool = False,
	):
		super().__init__()
		self.use_linear_projection = use_linear_projection
		self.num_attention_heads = num_attention_heads
		self.attention_head_dim = attention_head_dim
		inner_dim = num_attention_heads * attention_head_dim
		
		# Define input layers
		self.in_channels = in_channels
		
		self.norm = torch.nn.GroupNorm(num_groups=norm_num_groups, num_channels=in_channels, eps=1e-6, affine=True)
		if use_linear_projection:
			self.proj_in = nn.Linear(in_channels, inner_dim)
		else:
			self.proj_in = nn.Conv2d(in_channels, inner_dim, kernel_size=1, stride=1, padding=0)
		
		# Define transformers blocks
		self.transformer_blocks = nn.ModuleList(
			[
				BasicTransformerBlock(
					inner_dim,
					num_attention_heads,
					attention_head_dim,
					dropout=dropout,
					cross_attention_dim=cross_attention_dim,
					activation_fn=activation_fn,
					num_embeds_ada_norm=num_embeds_ada_norm,
					attention_bias=attention_bias,
					only_cross_attention=only_cross_attention,
					upcast_attention=upcast_attention,
				)
				for d in range(num_layers)
			]
		)
		
		# 4. Define output layers
		if use_linear_projection:
			self.proj_out = nn.Linear(in_channels, inner_dim)
		else:
			self.proj_out = nn.Conv2d(inner_dim, in_channels, kernel_size=1, stride=1, padding=0)
	
	def forward(
			self,
			hidden_states,
			encoder_hidden_states=None,
			timestep=None,
			class_labels=None,
			cross_attention_kwargs=None,
			return_dict: bool = True):
		# Input
		assert hidden_states.dim() == 5, f"Expected hidden_states to have ndim=5, but got ndim={hidden_states.dim()}."
		video_length = hidden_states.shape[2]
		hidden_states = rearrange(hidden_states, "b c f h w -> (b f) c h w")
		encoder_hidden_states = rearrange(encoder_hidden_states, 'b f n c -> (b f) n c')
		
		batch, channel, height, weight = hidden_states.shape
		residual = hidden_states
		
		hidden_states = self.norm(hidden_states)
		if not self.use_linear_projection:
			hidden_states = self.proj_in(hidden_states)
			inner_dim = hidden_states.shape[1]
			hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(batch, height * weight, inner_dim)
		else:
			inner_dim = hidden_states.shape[1]
			hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(batch, height * weight, inner_dim)
			hidden_states = self.proj_in(hidden_states)
		
		# Blocks
		for block in self.transformer_blocks:
			hidden_states = block(
				hidden_states,
				encoder_hidden_states=encoder_hidden_states,
				timestep=timestep,
				video_length=video_length,
				cross_attention_kwargs=cross_attention_kwargs,
				class_labels=class_labels
			)
		
		# Output
		if not self.use_linear_projection:
			hidden_states = (
				hidden_states.reshape(batch, height, weight, inner_dim).permute(0, 3, 1, 2).contiguous()
			)
			hidden_states = self.proj_out(hidden_states)
		else:
			hidden_states = self.proj_out(hidden_states)
			hidden_states = (
				hidden_states.reshape(batch, height, weight, inner_dim).permute(0, 3, 1, 2).contiguous()
			)
		
		output = hidden_states + residual
		
		output = rearrange(output, "(b f) c h w -> b c f h w", f=video_length)
		if not return_dict:
			return (output,)
		
		return SpatioTempTransformer3DModelOutput(sample=output)


class BasicTransformerBlock(nn.Module):
	def __init__(
			self,
			dim: int,
			num_attention_heads: int,
			attention_head_dim: int,
			dropout=0.0,
			cross_attention_dim: Optional[int] = None,
			activation_fn: str = "geglu",
			num_embeds_ada_norm: Optional[int] = None,
			attention_bias: bool = False,
			only_cross_attention: bool = False,
			double_self_attention: bool = False,
			upcast_attention: bool = False,
			norm_elementwise_affine: bool = True,
			norm_type: str = "layer_norm",
			final_dropout: bool = False,
	):
		super().__init__()
		self.only_cross_attention = only_cross_attention
		
		self.use_ada_layer_norm_zero = (num_embeds_ada_norm is not None) and norm_type == "ada_norm_zero"
		self.use_ada_layer_norm = (num_embeds_ada_norm is not None) and norm_type == "ada_norm"
		
		if norm_type in ("ada_norm", "ada_norm_zero") and num_embeds_ada_norm is None:
			raise ValueError(
				f"`norm_type` is set to {norm_type}, but `num_embeds_ada_norm` is not defined. Please make sure to"
				f" define `num_embeds_ada_norm` if setting `norm_type` to {norm_type}."
			)
		
		# Define 3 blocks. Each block has its own normalization layer.
		# 1. FF-Attn
		if self.use_ada_layer_norm:
			self.norm1 = AdaLayerNorm(dim, num_embeds_ada_norm)
		elif self.use_ada_layer_norm_zero:
			self.norm1 = AdaLayerNormZero(dim, num_embeds_ada_norm)
		else:
			self.norm1 = nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine)
		self.attn1 = FFAttention(
			query_dim=dim,
			heads=num_attention_heads,
			dim_head=attention_head_dim,
			dropout=dropout,
			bias=attention_bias,
			cross_attention_dim=cross_attention_dim if only_cross_attention else None,
			upcast_attention=upcast_attention,
		)
		
		# 2. Cross-Attn
		if cross_attention_dim is not None or double_self_attention:
			# We currently only use AdaLayerNormZero for self attention where there will only be one attention block.
			# I.e. the number of returned modulation chunks from AdaLayerZero would not make sense if returned during
			# the second cross attention block.
			self.norm2 = (
				AdaLayerNorm(dim, num_embeds_ada_norm)
				if self.use_ada_layer_norm
				else nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine)
			)
			self.attn2 = Attention(
				query_dim=dim,
				cross_attention_dim=cross_attention_dim if not double_self_attention else None,
				heads=num_attention_heads,
				dim_head=attention_head_dim,
				dropout=dropout,
				bias=attention_bias,
				upcast_attention=upcast_attention,
			)  # is self-attn if encoder_hidden_states is none
		else:
			self.norm2 = None
			self.attn2 = None
		
		# 3. Temp-Attn
		
		self.pos_proj_temp = Timesteps(dim, flip_sin_to_cos=True, downscale_freq_shift=0)
		self.pos_embedding_temp = TimestepEmbedding(
			dim,
			dim,
			act_fn="silu",
			post_act_fn=None,
			cond_proj_dim=None,
		)
		
		self.attn_temp = Attention(
			query_dim=dim,
			heads=num_attention_heads,
			dim_head=attention_head_dim,
			dropout=dropout,
			bias=attention_bias,
			upcast_attention=upcast_attention,
		)
		nn.init.zeros_(self.attn_temp.to_out[0].weight.data)
		self.norm_temp = (
			AdaLayerNorm(dim, num_embeds_ada_norm)
			if self.use_ada_layer_norm
			else nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine)
		)
		
		# 4. Feed-forward
		self.norm3 = nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine)
		self.ff = FeedForward(dim, dropout=dropout, activation_fn=activation_fn, final_dropout=final_dropout)
	
	def forward(
			self,
			hidden_states,
			attention_mask=None,
			encoder_hidden_states=None,
			encoder_attention_mask=None,
			timestep=None,
			video_length=None,
			cross_attention_kwargs=None,
			class_labels=None,
	):
		# Notice that normalization is always applied before the real computation in the following blocks.
		# 1. Self-Attention
		if self.use_ada_layer_norm:
			norm_hidden_states = self.norm1(hidden_states, timestep)
		elif self.use_ada_layer_norm_zero:
			norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.norm1(
				hidden_states, timestep, class_labels, hidden_dtype=hidden_states.dtype
			)
		else:
			norm_hidden_states = self.norm1(hidden_states)
		
		cross_attention_kwargs = cross_attention_kwargs if cross_attention_kwargs is not None else {}
		attn_output = self.attn1(
			norm_hidden_states,
			encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None,
			attention_mask=attention_mask,
			video_length=video_length,
			**cross_attention_kwargs,
		)
		if self.use_ada_layer_norm_zero:
			attn_output = gate_msa.unsqueeze(1) * attn_output
		hidden_states = attn_output + hidden_states
		
		# 2. Cross-Attention
		if self.attn2 is not None:
			norm_hidden_states = (
				self.norm2(hidden_states, timestep) if self.use_ada_layer_norm else self.norm2(hidden_states)
			)
			# TODO (Birch-San): Here we should prepare the encoder_attention mask correctly
			# prepare attention mask here
			
			attn_output = self.attn2(
				norm_hidden_states,
				encoder_hidden_states=encoder_hidden_states,
				attention_mask=encoder_attention_mask,
				**cross_attention_kwargs,
			)
			hidden_states = attn_output + hidden_states
		
		# 3. Temporal-Attention
		
		# Add positional embedding
		device = hidden_states.device
		dtype = hidden_states.dtype
		pos_embed = self.pos_proj_temp(torch.arange(video_length).long()).to(device=device, dtype=dtype)  # (f c)
		pos_embed = self.pos_embedding_temp(pos_embed).unsqueeze(0)  # (1, f, c)
		
		seq_len = hidden_states.shape[1]
		hidden_states = rearrange(hidden_states, "(b f) d c -> (b d) f c", f=video_length)
		norm_hidden_states = (
			self.norm_temp(hidden_states + pos_embed, timestep) if self.use_ada_layer_norm else self.norm_temp(hidden_states+pos_embed)
		)
		hidden_states = self.attn_temp(norm_hidden_states) + hidden_states
		hidden_states = rearrange(hidden_states, "(b d) f c -> (b f) d c", d=seq_len)
		
		# 4. Feed-forward
		norm_hidden_states = self.norm3(hidden_states)
		
		if self.use_ada_layer_norm_zero:
			norm_hidden_states = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None]
		
		ff_output = self.ff(norm_hidden_states)
		
		if self.use_ada_layer_norm_zero:
			ff_output = gate_mlp.unsqueeze(1) * ff_output
		
		hidden_states = ff_output + hidden_states
		
		return hidden_states