Spaces:
Sleeping
Sleeping
File size: 1,363 Bytes
b503afb a9ec8a3 b503afb a9ec8a3 b503afb a9ec8a3 b503afb a9ec8a3 b503afb a9ec8a3 b503afb a9ec8a3 b503afb a9ec8a3 b503afb a9ec8a3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 |
import streamlit as st
import pandas as pd
from pandasai import SmartDataframe
from pandasai.llm.openai import OpenAI
openai_api_key = st.secrets["openai_api_key"]
# create an LLM by instantiating OpenAI object, and passing API token
llm = OpenAI(api_token = openai_api_key)
st.title("Data analysis with PandasAI")
uploaded_file = st.file_uploader("Upload a CSV file for analysis", type=['csv'])
if uploaded_file is not None:
df = pd.read_csv(uploaded_file)
st.write(df.head(3))
# create PandasAI object, passing the LLM
sdf = SmartDataframe(df, config={"llm": llm})
prompt = st.text_area("Enter your question:")
# Generate the answer
if st.button("Find the answer"):
if prompt:
# call pandas_ai.run(), passing dataframe and prompt
with st.spinner("Generating response..."):
st.write("The answer is: ")
st.write(sdf.chat(prompt))
st.write("Here is the code to get the answer: ")
code_string = sdf.last_code_generated
# Split the string into separate lines
code_lines = code_string.strip().split('\n')
# Print the lines
for line in code_lines:
st.write(line)
else:
st.warning("Please enter a question.") |