Spaces:
Sleeping
Sleeping
File size: 33,553 Bytes
afa463a f4e6998 afa463a f4e6998 afa463a f4e6998 afa463a bce2a0f f4e6998 026cf13 f4e6998 bce2a0f f4e6998 bce2a0f f4e6998 bce2a0f f4e6998 670a6e9 bce2a0f 670a6e9 bce2a0f 670a6e9 f4e6998 67ae2ac bce2a0f 670a6e9 bce2a0f 670a6e9 bce2a0f afa463a bce2a0f afa463a 67ae2ac bce2a0f afa463a 670a6e9 f4e6998 026cf13 f4e6998 bce2a0f afa463a f4e6998 026cf13 f4e6998 afa463a f4e6998 5827f97 f4e6998 67ae2ac f4e6998 afa463a f4e6998 bce2a0f f4e6998 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 |
from llama_cpp import *
from ctypes import POINTER, c_size_t
from llama_cpp._internals import (
_LlamaModel, # type: ignore
_LlamaContext, # type: ignore
_LlamaBatch, # type: ignore
_LlamaTokenDataArray, # type: ignore
)
from KMP_list import kmp_search, compute_lps_array
from Turbo_Colormap import map_value_to_color, NOCOLOR, LEGEND, BACK_WHITE
class LLMGenerate:
def __init__(
self,
model,
n_keep,
n_discard: int = 256,
im_start=None,
top_k: int = 40,
top_p: float = 0.95,
min_p: float = 0.05,
typical_p: float = 1.0,
temp: float = 0.80,
repeat_penalty: float = 1.1,
repeat_last_n: int = 64,
frequency_penalty: float = 0.0,
presence_penalty: float = 0.0,
tfs_z: float = 1.0,
mirostat_mode: int = 0,
mirostat_tau: float = 5.0,
mirostat_eta: float = 0.1
):
def _eval_t(tokens):
return model.eval_t(
tokens=tokens,
n_keep=n_keep,
n_discard=n_discard,
im_start=im_start
)
def _sample_t(logits_processor):
return model.sample_t(
top_k=top_k,
top_p=top_p,
min_p=min_p,
typical_p=typical_p,
temp=temp,
repeat_penalty=repeat_penalty,
repeat_last_n=repeat_last_n,
frequency_penalty=frequency_penalty,
presence_penalty=presence_penalty,
tfs_z=tfs_z,
mirostat_mode=mirostat_mode,
mirostat_tau=mirostat_tau,
mirostat_eta=mirostat_eta,
logits_processor=logits_processor
)
self._eval_t = _eval_t
self._sample_t = _sample_t
self.str_detokenize = model.str_detokenize
self.venv_pop_token = model.venv_pop_token
# ========== 保存输出 ==========
self.t_bot = []
self.completion_tokens = []
self.history = ''
self.token = None
def eval_t(self, tokens):
# ========== 避免不完整的utf-8编码 ==========
self.completion_tokens.extend(tokens)
all_text = self.str_detokenize(self.completion_tokens)
if all_text:
self.t_bot.extend(self.completion_tokens)
self.history += all_text
self.completion_tokens = []
return self._eval_t(tokens)
def sample_t(self, logits_processor):
self.token = self._sample_t(logits_processor)
return self.token
def detokenize_sample_t(self):
self.completion_tokens.append(self.token)
all_text = self.str_detokenize(self.completion_tokens)
if not all_text:
return False
self.t_bot.extend(self.completion_tokens)
self.history += all_text
self.completion_tokens = []
return True
def eval_sample_t(self):
return self._eval_t([self.token])
def endswith_t(self, token_list):
return self.token in token_list
def endswith_s(self, start_func, str_list, com_func=str.rstrip):
if self.completion_tokens: # 不完整
return False
history = self.history
t_bot = self.t_bot
if start_func(history):
history = com_func(history)
for x in str_list:
if history.endswith(x):
n = len(t_bot)
for i in range(1, n): # 找出需要弃置的tokens长度
tmp = self.str_detokenize(t_bot[n - i:])
tmp = com_func(tmp)
if tmp.endswith(x):
if i > 1: # 最后一个token并未进入kv_cache
self.venv_pop_token(i - 1)
if history.endswith(tmp):
self.history = history[:-len(tmp)] # 移除末尾的tmp
return True
return False
kv_cache_type = {
'f32': 0,
'f16': 1,
'q8_0': 8,
'q4_0': 2,
'q4_1': 3,
'iq4_nl': 20,
'q5_0': 6,
'q5_1': 7
}
class StreamingLLM(Llama):
__backend_initialized = False
def __init__(
self,
model_path: str,
*,
# Model Params
n_gpu_layers: int = 0,
split_mode: int = llama_cpp.LLAMA_SPLIT_MODE_LAYER,
main_gpu: int = 0,
tensor_split: Optional[List[float]] = None,
vocab_only: bool = False,
use_mmap: bool = True,
use_mlock: bool = False,
kv_overrides: Optional[Dict[str, Union[bool, int, float]]] = None,
# Context Params
seed: int = llama_cpp.LLAMA_DEFAULT_SEED,
n_ctx: int = 512,
n_batch: int = 512,
n_threads: Optional[int] = None,
n_threads_batch: Optional[int] = None,
rope_scaling_type: Optional[int] = llama_cpp.LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED,
pooling_type: int = llama_cpp.LLAMA_POOLING_TYPE_UNSPECIFIED,
rope_freq_base: float = 0.0,
rope_freq_scale: float = 0.0,
yarn_ext_factor: float = -1.0,
yarn_attn_factor: float = 1.0,
yarn_beta_fast: float = 32.0,
yarn_beta_slow: float = 1.0,
yarn_orig_ctx: int = 0,
logits_all: bool = False,
embedding: bool = False,
offload_kqv: bool = True,
# Sampling Params
last_n_tokens_size: int = 64,
# LoRA Params
lora_base: Optional[str] = None,
lora_scale: float = 1.0,
lora_path: Optional[str] = None,
# Backend Params
numa: Union[bool, int] = False,
# Chat Format Params
chat_format: Optional[str] = None,
chat_handler: Optional[llama_chat_format.LlamaChatCompletionHandler] = None,
# Speculative Decoding
draft_model: Optional[LlamaDraftModel] = None,
# Tokenizer Override
tokenizer: Optional[BaseLlamaTokenizer] = None,
# Misc
verbose: bool = True,
# Extra Params
type_k: str = 'f16',
type_v: str = 'f16',
**kwargs, # type: ignore
):
"""Load a llama.cpp model from `model_path`.
Examples:
Basic usage
>>> import llama_cpp
>>> model = llama_cpp.Llama(
... model_path="path/to/model",
... )
>>> print(model("The quick brown fox jumps ", stop=["."])["choices"][0]["text"])
the lazy dog
Loading a chat model
>>> import llama_cpp
>>> model = llama_cpp.Llama(
... model_path="path/to/model",
... chat_format="llama-2",
... )
>>> print(model.create_chat_completion(
... messages=[{
... "role": "user",
... "content": "what is the meaning of life?"
... }]
... ))
Args:
model_path: Path to the model.
n_gpu_layers: Number of layers to offload to GPU (-ngl). If -1, all layers are offloaded.
split_mode: How to split the model across GPUs. See llama_cpp.LLAMA_SPLIT_* for options.
main_gpu: main_gpu interpretation depends on split_mode: LLAMA_SPLIT_NONE: the GPU that is used for the entire model. LLAMA_SPLIT_ROW: the GPU that is used for small tensors and intermediate results. LLAMA_SPLIT_LAYER: ignored
tensor_split: How split tensors should be distributed across GPUs. If None, the model is not split.
vocab_only: Only load the vocabulary no weights.
use_mmap: Use mmap if possible.
use_mlock: Force the system to keep the model in RAM.
kv_overrides: Key-value overrides for the model.
seed: RNG seed, -1 for random
n_ctx: Text context, 0 = from model
n_batch: Prompt processing maximum batch size
n_threads: Number of threads to use for generation
n_threads_batch: Number of threads to use for batch processing
rope_scaling_type: RoPE scaling type, from `enum llama_rope_scaling_type`. ref: https://github.com/ggerganov/llama.cpp/pull/2054
pooling_type: Pooling type, from `enum llama_pooling_type`.
rope_freq_base: RoPE base frequency, 0 = from model
rope_freq_scale: RoPE frequency scaling factor, 0 = from model
yarn_ext_factor: YaRN extrapolation mix factor, negative = from model
yarn_attn_factor: YaRN magnitude scaling factor
yarn_beta_fast: YaRN low correction dim
yarn_beta_slow: YaRN high correction dim
yarn_orig_ctx: YaRN original context size
logits_all: Return logits for all tokens, not just the last token. Must be True for completion to return logprobs.
embedding: Embedding mode only.
offload_kqv: Offload K, Q, V to GPU.
last_n_tokens_size: Maximum number of tokens to keep in the last_n_tokens deque.
lora_base: Optional path to base model, useful if using a quantized base model and you want to apply LoRA to an f16 model.
lora_path: Path to a LoRA file to apply to the model.
numa: numa policy
chat_format: String specifying the chat format to use when calling create_chat_completion.
chat_handler: Optional chat handler to use when calling create_chat_completion.
draft_model: Optional draft model to use for speculative decoding.
tokenizer: Optional tokenizer to override the default tokenizer from llama.cpp.
verbose: Print verbose output to stderr.
Raises:
ValueError: If the model path does not exist.
Returns:
A Llama instance.
"""
self.verbose = verbose
set_verbose(verbose)
if not StreamingLLM.__backend_initialized:
with suppress_stdout_stderr(disable=verbose):
llama_cpp.llama_backend_init()
StreamingLLM.__backend_initialized = True
if isinstance(numa, bool):
self.numa = (
llama_cpp.GGML_NUMA_STRATEGY_DISTRIBUTE
if numa
else llama_cpp.GGML_NUMA_STRATEGY_DISABLED
)
else:
self.numa = numa
if self.numa != llama_cpp.GGML_NUMA_STRATEGY_DISABLED:
with suppress_stdout_stderr(disable=verbose):
llama_cpp.llama_numa_init(self.numa)
self.model_path = model_path
# Model Params
self.model_params = llama_cpp.llama_model_default_params()
self.model_params.n_gpu_layers = (
0x7FFFFFFF if n_gpu_layers == -1 else n_gpu_layers
) # 0x7FFFFFFF is INT32 max, will be auto set to all layers
self.model_params.split_mode = split_mode
self.model_params.main_gpu = main_gpu
self.tensor_split = tensor_split
self._c_tensor_split = None
if self.tensor_split is not None:
if len(self.tensor_split) > llama_cpp.LLAMA_MAX_DEVICES:
raise ValueError(
f"Attempt to split tensors that exceed maximum supported devices. Current LLAMA_MAX_DEVICES={llama_cpp.LLAMA_MAX_DEVICES}"
)
# Type conversion and expand the list to the length of LLAMA_MAX_DEVICES
FloatArray = ctypes.c_float * llama_cpp.LLAMA_MAX_DEVICES
self._c_tensor_split = FloatArray(
*tensor_split # type: ignore
) # keep a reference to the array so it is not gc'd
self.model_params.tensor_split = self._c_tensor_split
self.model_params.vocab_only = vocab_only
self.model_params.use_mmap = use_mmap if lora_path is None else False
self.model_params.use_mlock = use_mlock
# kv_overrides is the original python dict
self.kv_overrides = kv_overrides
if kv_overrides is not None:
# _kv_overrides_array is a ctypes.Array of llama_model_kv_override Structs
kvo_array_len = len(kv_overrides) + 1 # for sentinel element
self._kv_overrides_array = (
llama_cpp.llama_model_kv_override * kvo_array_len
)()
for i, (k, v) in enumerate(kv_overrides.items()):
self._kv_overrides_array[i].key = k.encode("utf-8")
if isinstance(v, bool):
self._kv_overrides_array[i].tag = llama_cpp.LLAMA_KV_OVERRIDE_TYPE_BOOL
self._kv_overrides_array[i].value.bool_value = v
elif isinstance(v, int):
self._kv_overrides_array[i].tag = llama_cpp.LLAMA_KV_OVERRIDE_TYPE_INT
self._kv_overrides_array[i].value.int_value = v
elif isinstance(v, float):
self._kv_overrides_array[i].tag = llama_cpp.LLAMA_KV_OVERRIDE_TYPE_FLOAT
self._kv_overrides_array[i].value.float_value = v
else:
raise ValueError(f"Unknown value type for {k}: {v}")
self._kv_overrides_array[-1].key = (
b"\0" # ensure sentinel element is zeroed
)
self.model_params.kv_overrides = self._kv_overrides_array
self.n_batch = min(n_ctx, n_batch) # ???
self.n_threads = n_threads or max(multiprocessing.cpu_count() // 2, 1)
self.n_threads_batch = n_threads_batch or max(
multiprocessing.cpu_count() // 2, 1
)
# Context Params
self.context_params = llama_cpp.llama_context_default_params()
self.context_params.seed = seed
self.context_params.n_ctx = n_ctx
self.context_params.n_batch = self.n_batch
self.context_params.n_threads = self.n_threads
self.context_params.n_threads_batch = self.n_threads_batch
self.context_params.rope_scaling_type = (
rope_scaling_type
if rope_scaling_type is not None
else llama_cpp.LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED
)
self.context_params.pooling_type = pooling_type
self.context_params.rope_freq_base = (
rope_freq_base if rope_freq_base != 0.0 else 0
)
self.context_params.rope_freq_scale = (
rope_freq_scale if rope_freq_scale != 0.0 else 0
)
self.context_params.yarn_ext_factor = (
yarn_ext_factor if yarn_ext_factor != 0.0 else 0
)
self.context_params.yarn_attn_factor = (
yarn_attn_factor if yarn_attn_factor != 0.0 else 0
)
self.context_params.yarn_beta_fast = (
yarn_beta_fast if yarn_beta_fast != 0.0 else 0
)
self.context_params.yarn_beta_slow = (
yarn_beta_slow if yarn_beta_slow != 0.0 else 0
)
self.context_params.yarn_orig_ctx = yarn_orig_ctx if yarn_orig_ctx != 0 else 0
self.context_params.logits_all = (
logits_all if draft_model is None else True
) # Must be set to True for speculative decoding
self.context_params.embeddings = embedding # TODO: Rename to embeddings
# KV cache quantization
print(self.context_params.type_k, self.context_params.type_v)
self.context_params.type_k = kv_cache_type[type_k]
self.context_params.type_v = kv_cache_type[type_v]
self.context_params.offload_kqv = offload_kqv
# Sampling Params
self.last_n_tokens_size = last_n_tokens_size
self.cache: Optional[BaseLlamaCache] = None
self.lora_base = lora_base
self.lora_scale = lora_scale
self.lora_path = lora_path
if not os.path.exists(model_path):
raise ValueError(f"Model path does not exist: {model_path}")
self._model = _LlamaModel(
path_model=self.model_path, params=self.model_params, verbose=self.verbose
)
# Override tokenizer
self.tokenizer_ = tokenizer or LlamaTokenizer(self)
# Set the default value for the context and correct the batch
if n_ctx == 0:
n_ctx = self._model.n_ctx_train()
self.n_batch = min(n_ctx, n_batch)
self.context_params.n_ctx = self._model.n_ctx_train()
self.context_params.n_batch = self.n_batch
self._ctx = _LlamaContext(
model=self._model,
params=self.context_params,
verbose=self.verbose,
)
self._batch = _LlamaBatch(
n_tokens=self.n_batch,
embd=0,
n_seq_max=self.context_params.n_ctx,
verbose=self.verbose,
)
if self.lora_path:
if self._model.apply_lora_from_file(
self.lora_path,
self.lora_scale,
self.lora_base,
self.n_threads,
):
raise RuntimeError(
f"Failed to apply LoRA from lora path: {self.lora_path} to base path: {self.lora_base}"
)
if self.verbose:
print(llama_cpp.llama_print_system_info().decode("utf-8"), file=sys.stderr)
self.chat_format = chat_format
self.chat_handler = chat_handler
self.draft_model = draft_model
self._n_vocab = self.n_vocab()
self._n_ctx = self.n_ctx()
self._token_nl = self.token_nl()
self._token_eos = self.token_eos()
self._candidates = _LlamaTokenDataArray(n_vocab=self._n_vocab)
self.n_tokens = 0
self.input_ids: npt.NDArray[np.intc] = np.ndarray((n_ctx,), dtype=np.intc)
self.scores: npt.NDArray[np.single] = np.ndarray(
(n_ctx, self._n_vocab), dtype=np.single
)
self._mirostat_mu = ctypes.c_float(
2.0 * 5.0
) # TODO: Move this to sampling context
try:
self.metadata = self._model.metadata()
except Exception as e:
self.metadata = {}
if self.verbose:
print(f"Failed to load metadata: {e}", file=sys.stderr)
if self.verbose:
print(f"Model metadata: {self.metadata}", file=sys.stderr)
if (
self.chat_format is None
and self.chat_handler is None
and "tokenizer.chat_template" in self.metadata
):
chat_format = llama_chat_format.guess_chat_format_from_gguf_metadata(
self.metadata
)
if chat_format is not None:
self.chat_format = chat_format
if self.verbose:
print(f"Guessed chat format: {chat_format}", file=sys.stderr)
else:
template = self.metadata["tokenizer.chat_template"]
try:
eos_token_id = int(self.metadata["tokenizer.ggml.eos_token_id"])
except:
eos_token_id = self.token_eos()
try:
bos_token_id = int(self.metadata["tokenizer.ggml.bos_token_id"])
except:
bos_token_id = self.token_bos()
eos_token = self._model.token_get_text(eos_token_id)
bos_token = self._model.token_get_text(bos_token_id)
if self.verbose:
print(f"Using gguf chat template: {template}", file=sys.stderr)
print(f"Using chat eos_token: {eos_token}", file=sys.stderr)
print(f"Using chat bos_token: {bos_token}", file=sys.stderr)
self.chat_handler = llama_chat_format.Jinja2ChatFormatter(
template=template, eos_token=eos_token, bos_token=bos_token
).to_chat_handler()
if self.chat_format is None and self.chat_handler is None:
self.chat_format = "llama-2"
if self.verbose:
print(f"Using fallback chat format: {chat_format}", file=sys.stderr)
self._venv_init()
def str_detokenize(self, tokens) -> str:
return self.detokenize(tokens).decode('utf-8', errors='ignore')
def kv_cache_seq_trim(self):
self._ctx.kv_cache_seq_rm(-1, self.n_tokens, -1)
def _venv_init(self):
self.venv = [0]
self.venv_idx_map = []
def venv_create(self, name: str):
self.venv.append(0)
self.venv_idx_map.append(name)
return name
def venv_disband(self, name_set):
if len(self.venv) <= 1:
return False
name_set = {x for x in name_set if x in self.venv_idx_map}
if not name_set:
return False
while self.venv_idx_map:
if self.venv_idx_map[0] in name_set:
self.venv_idx_map.pop(0) # 删除
tmp = self.venv.pop(1) # 对应的 venv 移入上一层
self.venv[0] += tmp
else:
break
return True
def venv_revision(self, name: str):
if len(self.venv) <= 1:
return False
if name not in self.venv_idx_map:
return False
_s = 0
while self.venv_idx_map:
if self.venv_idx_map[-1] == name:
break
self.venv_idx_map.pop() # 删除
_s += self.venv.pop()
if _s:
self.n_tokens -= min(_s, self.n_tokens)
self.kv_cache_seq_trim()
return True
def venv_remove(self, name: str, keep_last=0):
if len(self.venv) <= 1:
return False
if name not in self.venv_idx_map:
return False
venv_idx = self.venv_idx_map.index(name) + 1
count_name = self.venv_idx_map.count(name) if keep_last else 0
while self.venv_idx_map:
if keep_last and count_name <= keep_last:
break # 保留最后n个
self.venv_idx_map.pop(venv_idx - 1) # 删除
if venv_idx == len(self.venv) - 1:
# 最后一层
self.n_tokens -= min(self.venv.pop(), self.n_tokens)
self.kv_cache_seq_trim()
break
else:
# 非最后一层
n_keep = self.n_tokens - sum(self.venv[i] for i in range(venv_idx, len(self.venv)))
n_discard = self.venv.pop(venv_idx)
self.kv_cache_seq_ltrim(n_keep, n_discard)
try:
venv_idx = self.venv_idx_map.index(name, venv_idx - 1) + 1
except ValueError: # 没有了
break
count_name -= 1 # 计数减一
return True
def venv_pop_token(self, n=1):
self.n_tokens -= n
self.venv[-1] -= n
self.kv_cache_seq_trim()
@property
def venv_info(self):
return str((self.n_tokens, self.venv, self.venv_idx_map))
def venv_viz(self):
completion_tokens = []
history = LEGEND + '\n'
text_color = NOCOLOR
for i in range(self.venv[-1]):
idx = self.n_tokens - self.venv[-1] + i
token = self._input_ids[idx]
if not completion_tokens: # 不完整则是第一个token
# ========== 获取对应token的概率 ==========
score = self.scores[idx-1: idx, :].ravel() # 第i个token的分数是前i-1个token预测的,所以减一
score = np.exp(score) # 空白则全1,但无所谓了
sum_score = np.sum(score)
probabilities = score[token] / sum_score
if probabilities < 0.001:
text_color = NOCOLOR
else:
if text_color is NOCOLOR:
text_color = BACK_WHITE + map_value_to_color(probabilities)
else:
text_color = map_value_to_color(probabilities)
history += text_color
# ========== 避免不完整的utf-8编码 ==========
completion_tokens.append(token)
all_text = self.str_detokenize(completion_tokens)
if not all_text:
continue
completion_tokens = [] # 完整则清空缓存
history += repr(all_text)[1:-1]
return history + NOCOLOR
def kv_cache_seq_ltrim(self, n_keep, n_discard=256, n_past=-1, im_start=None):
if n_keep < 0:
return
if n_past < 0:
n_past = self.n_tokens
if im_start is not None: # [<|im_start|>, name, nl]
lps = compute_lps_array(im_start)
_idx = kmp_search(self.input_ids, im_start, n_keep + n_discard, n_past, lps)
if _idx >= n_keep: # 其实是大于等于 n_keep + n_discard
n_discard = _idx - n_keep # 截断到最近的 im_start 序列结构
else:
_idx = kmp_search(self.input_ids, im_start, n_keep, n_past, lps)
if _idx >= n_keep:
n_keep = _idx + len(im_start) # 至少保留一个 im_start 序列结构
print(im_start, n_keep, n_discard, _idx)
self._ctx.kv_cache_seq_rm(-1, n_keep, n_keep + n_discard)
self._ctx.kv_cache_seq_shift(0, n_keep + n_discard, n_past, -n_discard)
self.input_ids[n_keep:n_past - n_discard] = self.input_ids[n_keep + n_discard:n_past]
self.n_tokens = n_past - n_discard
def eval_t(self, tokens, n_keep=4, n_discard=256, im_start=None):
if self._n_ctx < self.n_tokens + len(tokens):
tmp_n_discard = max(n_discard, self.n_tokens + len(tokens) - self._n_ctx)
self.kv_cache_seq_ltrim(n_keep, tmp_n_discard, im_start=im_start)
for i in range(0, len(tokens), self.n_batch):
batch = tokens[i: i + self.n_batch]
n_past = self.n_tokens
n_tokens = len(batch)
self._batch.set_batch(
batch=batch, n_past=n_past, logits_all=self.context_params.logits_all
)
self._ctx.decode(self._batch)
# Save tokens
self.input_ids[n_past: n_past + n_tokens] = batch
# Save logits
rows = n_tokens
cols = self._n_vocab
offset = (
0 if self.context_params.logits_all else n_tokens - 1
) # NOTE: Only save the last token logits if logits_all is False
self.scores[n_past + offset: n_past + n_tokens, :].reshape(-1)[
:
] = self._ctx.get_logits()[offset * cols: rows * cols]
# Update n_tokens
self.n_tokens += n_tokens
self.venv[-1] += n_tokens
return self.n_tokens
def sample_t(
self,
top_k: int = 40,
top_p: float = 0.95,
min_p: float = 0.05,
typical_p: float = 1.0,
temp: float = 0.80,
repeat_penalty: float = 1.1,
repeat_last_n: int = 64,
frequency_penalty: float = 0.0,
presence_penalty: float = 0.0,
tfs_z: float = 1.0,
mirostat_mode: int = 0,
mirostat_eta: float = 0.1,
mirostat_tau: float = 5.0,
penalize_nl: bool = True,
logits_processor=None,
grammar: Optional[LlamaGrammar] = None,
):
last_n_tokens_data = [llama_cpp.llama_token(0)] * max(
0, repeat_last_n - self.n_tokens
) + self._input_ids[-repeat_last_n:].tolist()
last_n_tokens_size = len(last_n_tokens_data)
n_vocab = self._n_vocab
n_ctx = self._n_ctx
top_k = n_vocab if top_k <= 0 else top_k
last_n_tokens_size = n_ctx if last_n_tokens_size < 0 else last_n_tokens_size
last_n_tokens_data_c = (llama_cpp.llama_token * last_n_tokens_size)(
*last_n_tokens_data
)
logits: npt.NDArray[np.single] = self.scores[self.n_tokens - 1: self.n_tokens, :].ravel()
if logits_processor is not None:
logits[:] = logits_processor(self._input_ids, logits)
self._candidates.copy_logits(logits)
self._ctx.sample_repetition_penalties(
candidates=self._candidates,
last_tokens_data=last_n_tokens_data_c,
penalty_last_n=last_n_tokens_size,
penalty_repeat=repeat_penalty,
penalty_freq=frequency_penalty,
penalty_present=presence_penalty,
)
if not penalize_nl:
nl_logit = logits[self._token_nl]
self._candidates.candidates.data[self._token_nl].logit = llama_cpp.c_float(
nl_logit
)
if grammar is not None:
self._ctx.sample_grammar(
candidates=self._candidates,
grammar=grammar,
)
if temp < 0.0:
self._ctx.sample_softmax(candidates=self._candidates)
id_ = self._candidates.candidates.data[0].id
elif temp == 0.0:
id_ = self._ctx.sample_token_greedy(candidates=self._candidates)
elif mirostat_mode == 1:
self._ctx.sample_temp(candidates=self._candidates, temp=temp)
id_ = self._ctx.sample_token_mirostat(
candidates=self._candidates,
tau=mirostat_tau,
eta=mirostat_eta,
mu=2.0 * mirostat_tau,
m=100,
)
elif mirostat_mode == 2:
self._ctx.sample_temp(candidates=self._candidates, temp=temp)
id_ = self._ctx.sample_token_mirostat_v2(
candidates=self._candidates,
tau=mirostat_tau,
eta=mirostat_eta,
mu=2.0 * mirostat_tau,
)
else:
self._ctx.sample_top_k(candidates=self._candidates, k=top_k, min_keep=1)
self._ctx.sample_tail_free(candidates=self._candidates, z=tfs_z, min_keep=1)
self._ctx.sample_typical(
candidates=self._candidates, p=typical_p, min_keep=1
)
self._ctx.sample_top_p(candidates=self._candidates, p=top_p, min_keep=1)
self._ctx.sample_min_p(candidates=self._candidates, p=min_p, min_keep=1)
self._ctx.sample_temp(candidates=self._candidates, temp=temp)
id_ = self._ctx.sample_token(candidates=self._candidates)
if grammar is not None:
self._ctx.grammar_accept_token(grammar=grammar, token=id_)
return id_
def generate_t(
self,
tokens: Sequence[int],
n_keep,
n_discard: int = 256,
im_start=None,
top_k: int = 40,
top_p: float = 0.95,
min_p: float = 0.05,
typical_p: float = 1.0,
temp: float = 0.80,
repeat_penalty: float = 1.1,
repeat_last_n: int = 64,
frequency_penalty: float = 0.0,
presence_penalty: float = 0.0,
tfs_z: float = 1.0,
mirostat_mode: int = 0,
mirostat_tau: float = 5.0,
mirostat_eta: float = 0.1,
logits_processor: Optional[LogitsProcessorList] = None,
stopping_criteria: Optional[StoppingCriteriaList] = None,
grammar: Optional[LlamaGrammar] = None,
) -> Generator[int, Optional[Sequence[int]], None]:
typical_p = float(typical_p)
frequency_penalty = float(frequency_penalty)
presence_penalty = float(presence_penalty)
tfs_z = float(tfs_z)
mirostat_tau = float(mirostat_tau)
while True:
self.eval_t(tokens, n_keep, n_discard, im_start=im_start)
token = self.sample_t(
top_k=top_k,
top_p=top_p,
min_p=min_p,
typical_p=typical_p,
temp=temp,
repeat_penalty=repeat_penalty,
repeat_last_n=repeat_last_n,
frequency_penalty=frequency_penalty,
presence_penalty=presence_penalty,
tfs_z=tfs_z,
mirostat_mode=mirostat_mode,
mirostat_tau=mirostat_tau,
mirostat_eta=mirostat_eta,
logits_processor=logits_processor,
grammar=grammar,
)
if stopping_criteria is not None and stopping_criteria(
self._input_ids, self._scores[-1, :]
):
return
tokens = yield token
if tokens is None:
tokens = [token]
def load_session(self, filepath: str):
n_tokens = POINTER(c_size_t)(c_size_t(0))
tokens = (llama_cpp.llama_token * self.n_ctx())()
retn = llama_cpp.llama_load_session_file(self._ctx.ctx,
filepath.encode('utf-8'),
tokens,
self.n_ctx(),
n_tokens)
self.n_tokens = n_tokens.contents.value
self.input_ids[:self.n_tokens] = tokens[:self.n_tokens]
self._venv_init()
return retn
def save_session(self, filepath: str):
tokens = self._input_ids.tolist()
tokens = (llama_cpp.llama_token * len(tokens))(*tokens)
return llama_cpp.llama_save_session_file(self._ctx.ctx, filepath.encode('utf-8'), tokens, self.n_tokens)
|