File size: 11,646 Bytes
83851a0 bf1193e 83851a0 bf1193e 83851a0 fb6d9d1 83851a0 fb6d9d1 83851a0 943ccd0 83851a0 29831d7 83851a0 bf1193e 83851a0 bf1193e 83851a0 bf1193e 83851a0 bf1193e 83851a0 bf1193e 83851a0 bf1193e 83851a0 bf1193e 83851a0 bf1193e 83851a0 bf1193e 83851a0 bf1193e 83851a0 bf1193e 83851a0 fb6d9d1 bf1193e fb6d9d1 bf1193e fb6d9d1 83851a0 bf1193e 83851a0 fb6d9d1 bf1193e fb6d9d1 eaddfe1 fb6d9d1 eaddfe1 fb6d9d1 bf1193e fb6d9d1 83851a0 bf1193e 83851a0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 |
from flask import Flask, render_template, request, redirect, send_file
from langchain.llms import HuggingFaceHub
from langchain.vectorstores import Chroma
from langchain.chains import RetrievalQA
import os
import sys
from langchain.embeddings import HuggingFaceBgeEmbeddings
from langchain.embeddings import HuggingFaceEmbeddings
from langchain.document_loaders import TextLoader
from langchain.document_loaders import OnlinePDFLoader
from pypdf import PdfReader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.text_splitter import CharacterTextSplitter
import json
import re
import random
import spacy
import platform
app = Flask(__name__)
global isServer
if platform.system() == "Darwin":
isServer = False
else:
isServer = True
global baseFilePath
global jsonPath
if isServer:
baseFilePath = "/data/"
jsonPath = baseFilePath + "keyvalues/redacted.json"
else:
baseFilePath = "./"
jsonPath = baseFilePath + "keyvalues/redacted.json"
access_token = os.environ.get("ACCESS_TOKEN")
lastnames = ["Smith", "Johnson", "Williams", "Jones", "Brown", "Davis", "Miller", "Wilson", "Moore", "Taylor", "Anderson", "Thomas", "Jackson", "White", "Harris", "Martin", "Thompson", "Garcia", "Martinez", "Robinson", "Clark", "Rodriguez", "Lewis", "Lee", "Walker", "Hall", "Allen", "Young", "Hernandez", "King", "Wright", "Lopez", "Hill", "Scott", "Green", "Adams", "Baker", "Gonzalez", "Nelson", "Carter", "Mitchell", "Perez", "Roberts", "Turner", "Phillips", "Campbell", "Parker", "Evans", "Edwards", "Collins", "Stewart", "Sanchez", "Morris", "Rogers", "Reed", "Cook", "Morgan", "Bell", "Murphy", "Bailey", "Rivera", "Cooper", "Richardson", "Cox", "Howard", "Ward", "Torres", "Peterson", "Gray", "Ramirez", "James", "Watson", "Brooks", "Kelly", "Sanders", "Price", "Bennett", "Wood", "Barnes", "Ross", "Henderson", "Coleman", "Jenkins", "Perry", "Powell", "Long", "Patterson", "Hughes", "Flores", "Washington", "Butler", "Simmons", "Foster", "Gonzales", "Bryant", "Alexander", "Russell", "Griffin", "Diaz", "Hayes"]
def generateName():
return names[random.randint(0, len(names)-1)].title() + " " + lastnames[random.randint(0, len(lastnames)-1)]
def valueInJSON(value, key):
try:
if data[key][value] != "":
return data[key][value]
except KeyError:
return ""
os.makedirs(baseFilePath + "documents/", exist_ok=True)
os.makedirs(baseFilePath + "text/", exist_ok=True)
os.makedirs(baseFilePath + "redacted/", exist_ok=True)
os.makedirs(baseFilePath + "chroma_db/", exist_ok=True)
os.makedirs(baseFilePath + "keyvalues/", exist_ok=True)
if not os.path.exists(jsonPath):
with open(jsonPath, 'w+') as file:
json.dump({"names": {}, "addresses": {}, "companyNames": {}, "phoneNumbers": {}, "emails": {}}, file, indent=2)
with open(jsonPath, 'r') as file:
data = json.load(file)
with open('names.txt', 'r') as file:
names = file.read().splitlines()
names = [x.lower() for x in names]
#with open('addresses.txt', 'r') as file:
# addresses = file.read().splitlines()
def redactDocument(filepath):
#TAKES A DOCUMENT AND REDACTS SENSITIVE INFO SUCH AS NAMES, ADDRESSES, PHONE NUMBERS, EMAILS, ETC.
file = open(filepath, "r")
filename = filepath.split("/")[-1].split(".")[0]
file = file.readlines()
text = ""
for line in file:
text += line
lineOfText = NER(line)
#NAMES
for word in lineOfText.ents:
if word.label_ == "PERSON" and " " in word.text and word.text.lower().split(' ')[0] in names:
inJson = valueInJSON(word.text, "names")
if inJson != "":
fakeName = inJson
else:
fakeName = generateName()
data['names'][word.text] = fakeName
text = text.replace(word.text, fakeName)
text = text.replace(word.text+"'s", fakeName+"'s")
text = text.replace(word.text+"'", fakeName+"'")
text = text.replace(word.text.split(' ')[1], fakeName.split(' ')[1])
else:
pass
#EMAIL
#if re.search(r'\S+@\S+', line):
# for i in re.findall(r'\S+@\S+', line):
# if i in data['emails']:
# fakeEmail = data['emails'][i]
# else:
# emailProviders = ["gmail.com", "yahoo.com", "outlook.com", "hotmail.com", "aol.com", "icloud.com", "protonmail.com"]
# fakeEmail = os.urandom(10).hex() + emailProviders[random.randint(0, len(emailProviders)-1)]
# data['emails'][i] = fakeEmail
# text = text.replace(i, fakeEmail)
txtFile = baseFilePath + "redacted/" + filename + ".txt"
with open(txtFile, "w+") as f:
f.write(text)
return text
global isFirst
isFirst = True
global history
history = [("", "")]
global embeddings
if isServer:
embeddings = HuggingFaceEmbeddings()
else:
embeddings = HuggingFaceEmbeddings()
#model = "BAAI/bge-base-en-v1.5"
#encode_kwargs = {
# "normalize_embeddings": True
#}
#embeddings = HuggingFaceBgeEmbeddings(
# model_name=model, encode_kwargs=encode_kwargs, model_kwargs={"device": "cpu"}
#)
def hideOutput():
sys.stdout = open(os.devnull, 'w')
sys.stderr = open(os.devnull, 'w')
def showOutput():
sys.stdout = sys.__stdout__
sys.stderr = sys.__stderr__
def prepareLLM():
#PREPARES CHROMA DB AND ACCESSES THE MIXTRAL LLM
db = Chroma(persist_directory=baseFilePath + "chroma_db", embedding_function=embeddings)
retriever = db.as_retriever(search_kwargs={'k': 1})
if isServer:
llm = HuggingFaceHub(repo_id="mistralai/Mixtral-8x7B-Instruct-v0.1", model_kwargs={"temperature": 0.1, "max_new_tokens": 700})
else:
llm = HuggingFaceHub(repo_id="mistralai/Mixtral-8x7B-Instruct-v0.1", model_kwargs={"temperature": 0.1, "max_new_tokens": 700},huggingfacehub_api_token=access_token)
global qa
qa = RetrievalQA.from_chain_type(llm=llm, chain_type="stuff", retriever=retriever, return_source_documents=True)
def question(history, text):
#global isFirst
#if isFirst:
prepareLLM()
# isFirst = False
with open(jsonPath, 'r') as file:
jsonValues = json.load(file)
#REDACTING SENSITIVE INFO IN REQUEST
for key in jsonValues:
for value in jsonValues[key]:
if value in text:
text = text.replace(value, jsonValues[key][value])
if value.lower() in text:
text = text.replace(value.lower(), jsonValues[key][value])
query = "You are a helpful assistant. Generate responses exclusively from the information contained in the documents. In the event that a user inquiry seeks information not explicitly stated in the documents, refrain from providing an answer. Exercise precision by relying solely on the information explicitly presented in the documents; avoid making inferences, assumptions, or speculations beyond what is explicitly mentioned. User Prompt: " + text
result = qa({"query": query})
history.append((text, result['result']))
resultValue = result['result']
print(resultValue)
#UNREDACTING THE RESULT
for key in jsonValues:
for value in jsonValues[key]:
resultValue = resultValue.replace(jsonValues[key][value], value)
return resultValue
def extractText(file):
#TAKING A PDF FILE AND CONVERTING IT TO A .TXT IN THE "TEXT" FOLDER
reader = PdfReader(file)
filename = os.path.splitext(os.path.basename(file))[0]
text = ""
for page in reader.pages:
text += page.extract_text() + "\n"
txtFile = baseFilePath + "text/" + filename + ".txt"
#with open(txtFile, "w+") as f:
#make utf 8
with open(txtFile, "w+") as f:
#f.write(re.sub(r'\s+', ' ', text))
#write text file in utf-8 format
f.write(text)
#f.write(text)
redactDocument(txtFile)
print(data)
with open(jsonPath, 'w') as file:
json.dump(data, file, indent=2)
def newFile(files, filepaths):
count = 0
for file in files:
print("Processing: " + filepaths[count].split("/")[-1])
#EXTRACTING TEXT AND PROCESSING PDF
extractText(filepaths[count])
redactedFile = filepaths[count].split("/")[-1].split(".")[0]
#redactedFile = baseFilePath + "redacted/" + redactedFile + ".txt"
redactedFile = baseFilePath + "redacted/" + redactedFile + ".txt"
print("1")
loader = TextLoader(redactedFile, encoding='UTF-8')
print("2")
documents = loader.load()
print("3")
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=300, chunk_overlap=0, separators=[" ", ",", "\n"]
)
print("4")
texts = text_splitter.split_documents(documents)
print("5")
print(texts)
print("6")
chromaDirectory = baseFilePath + "chroma_db"
print("7")
Chroma.from_documents(texts, embeddings, persist_directory=chromaDirectory)
print("8")
print("Done processing: " + filepaths[count].split("/")[-1])
count = count + 1
@app.route('/', methods=['GET', 'POST'])
def chat():
if request.method == 'POST':
#HANDLES FILE UPLOADS
global NER
NER = spacy.load("en_core_web_lg")
files = request.files.getlist('pdf-files[]')
filenames = []
for file in files:
filenames.append(file.filename)
filepaths = []
documents_directory = baseFilePath + "documents/"
os.makedirs(documents_directory, exist_ok=True)
count = 0
for file in files:
filepath = os.path.join(documents_directory, filenames[count])
with open(filepath, 'wb') as f:
f.write(file.read())
filepaths.append(filepath)
count = count + 1
newFile(files, filepaths)
return "Success"
#MAIN PAGE LOAD
documents_directory = baseFilePath + "documents/"
documents = os.listdir(documents_directory)
return render_template('chat.html', history=[("", "")], documents=documents)
@app.route('/chat', methods=['GET'])
def askQuestion():
#PROCESSING USER QUESTIONS
text = request.args.get('message')
display = question(history, text)
return display
@app.route('/document', methods=['GET'])
def document():
#RETURNS DOCUMENTS
name = request.args.get('name')
path = os.path.join("documents", name)
return send_file(path)
@app.route('/clear', methods=['GET', 'POST'])
def clear():
#CLEARS ALL FILES
documents_directory = baseFilePath + "documents/"
documents = os.listdir(documents_directory)
for document in documents:
os.system("rm -rf " + os.path.join(documents_directory, document))
documents_directory = baseFilePath + "text/"
documents = os.listdir(documents_directory)
for document in documents:
os.system("rm -rf " + os.path.join(documents_directory, document))
documents_directory = baseFilePath + "redacted/"
documents = os.listdir(documents_directory)
for document in documents:
os.system("rm -rf " + os.path.join(documents_directory, document))
chroma_directory = baseFilePath + "chroma_db/"
os.system("rm -rf " + chroma_directory)
with open(jsonPath, 'w') as file:
json.dump({"names": {}, "addresses": {}, "companyNames": {}, "phoneNumbers": {}, "emails": {}}, file, indent=2)
return redirect('/')
if __name__ == '__main__':
app.run(debug=True) |