Spaces:
Runtime error
Runtime error
File size: 26,165 Bytes
a001281 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 |
import os
import math
import wandb
import random
import logging
import inspect
import argparse
import datetime
import subprocess
from pathlib import Path
from tqdm.auto import tqdm
from einops import rearrange
from omegaconf import OmegaConf
from safetensors import safe_open
from typing import Dict, Optional, Tuple
import torch
import torchvision
import torch.nn.functional as F
import torch.distributed as dist
from torch.optim.swa_utils import AveragedModel
from torch.utils.data.distributed import DistributedSampler
from torch.nn.parallel import DistributedDataParallel as DDP
import diffusers
from diffusers import AutoencoderKL, DDIMScheduler
from diffusers.models import UNet2DConditionModel
from diffusers.pipelines import StableDiffusionPipeline
from diffusers.optimization import get_scheduler
from diffusers.utils import check_min_version
from diffusers.utils.import_utils import is_xformers_available
from animatediff.models.resnet import InflatedConv3d
import transformers
from transformers import CLIPTextModel, CLIPTokenizer
from animatediff.data.dataset_web import WebVid10M
from animatediff.models.unet import UNet3DConditionModel
from animatediff.pipelines.pipeline_animation import AnimationPipeline
from animatediff.pipelines.validation_pipeline import ValidationPipeline
from animatediff.utils.util import save_videos_grid, zero_rank_print, prepare_mask_coef, prepare_mask_coef_by_score
def init_dist(launcher="slurm", backend='nccl', port=29500, **kwargs):
"""Initializes distributed environment."""
if launcher == 'pytorch':
rank = int(os.environ['RANK'])
num_gpus = torch.cuda.device_count()
local_rank = rank % num_gpus
torch.cuda.set_device(local_rank)
dist.init_process_group(backend=backend, **kwargs)
elif launcher == 'slurm':
proc_id = int(os.environ['SLURM_PROCID'])
ntasks = int(os.environ['SLURM_NTASKS'])
node_list = os.environ['SLURM_NODELIST']
num_gpus = torch.cuda.device_count()
local_rank = proc_id % num_gpus
torch.cuda.set_device(local_rank)
addr = subprocess.getoutput(
f'scontrol show hostname {node_list} | head -n1')
os.environ['MASTER_ADDR'] = addr
os.environ['WORLD_SIZE'] = str(ntasks)
os.environ['RANK'] = str(proc_id)
port = os.environ.get('PORT', port)
os.environ['MASTER_PORT'] = str(port)
dist.init_process_group(backend=backend)
zero_rank_print(f"proc_id: {proc_id}; local_rank: {local_rank}; ntasks: {ntasks}; node_list: {node_list}; num_gpus: {num_gpus}; addr: {addr}; port: {port}")
else:
raise NotImplementedError(f'Not implemented launcher type: `{launcher}`!')
return local_rank
def main(
image_finetune: bool,
name: str,
use_wandb: bool,
launcher: str,
output_dir: str,
pretrained_model_path: str,
train_data: Dict,
validation_data: Dict,
cfg_random_null_text: bool = True,
cfg_random_null_text_ratio: float = 0.1,
unet_checkpoint_path: str = "",
unet_additional_kwargs: Dict = {},
ema_decay: float = 0.9999,
noise_scheduler_kwargs = None,
max_train_epoch: int = -1,
max_train_steps: int = 100,
validation_steps: int = 100,
validation_steps_tuple: Tuple = (-1,),
learning_rate: float = 3e-5,
scale_lr: bool = False,
lr_warmup_steps: int = 0,
lr_scheduler: str = "constant",
trainable_modules: Tuple[str] = (None, ),
num_workers: int = 32,
train_batch_size: int = 1,
adam_beta1: float = 0.9,
adam_beta2: float = 0.999,
adam_weight_decay: float = 1e-2,
adam_epsilon: float = 1e-08,
max_grad_norm: float = 1.0,
gradient_accumulation_steps: int = 32,
gradient_checkpointing: bool = False,
checkpointing_epochs: int = 5,
checkpointing_steps: int = -1,
mixed_precision_training: bool = True,
enable_xformers_memory_efficient_attention: bool = True,
statistic: list = [1, 40],
global_seed: int = 42,
is_debug: bool = False,
mask_frame: list = [0],
pretrained_motion_module_path: str = '',
pretrained_sd_path: str = '',
mask_sim_range: list = [0.2, 1.0],
):
check_min_version("0.10.0.dev0")
# Initialize distributed training
local_rank = init_dist(launcher=launcher)
global_rank = dist.get_rank()
num_processes = dist.get_world_size()
is_main_process = global_rank == 0
seed = global_seed + global_rank
torch.manual_seed(seed)
# Logging folder
folder_name = "debug" if is_debug else name + datetime.datetime.now().strftime("-%Y-%m-%dT%H-%M-%S")
output_dir = os.path.join(output_dir, folder_name)
if is_debug and os.path.exists(output_dir):
os.system(f"rm -rf {output_dir}")
*_, config = inspect.getargvalues(inspect.currentframe())
# Make one log on every process with the configuration for debugging.
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
level=logging.INFO,
filemode='a',
filename='train_v2_2.log',
)
if is_main_process and (not is_debug) and use_wandb:
run = wandb.init(project="image2video", name=folder_name, config=config)
# Handle the output folder creation
if is_main_process:
os.makedirs(output_dir, exist_ok=True)
os.makedirs(f"{output_dir}/samples", exist_ok=True)
os.makedirs(f"{output_dir}/sanity_check", exist_ok=True)
os.makedirs(f"{output_dir}/checkpoints", exist_ok=True)
OmegaConf.save(config, os.path.join(output_dir, 'config.yaml'))
# Load scheduler, tokenizer and models.
noise_scheduler = DDIMScheduler(**OmegaConf.to_container(noise_scheduler_kwargs))
vae = AutoencoderKL.from_pretrained(pretrained_model_path, subfolder="vae")
tokenizer = CLIPTokenizer.from_pretrained(pretrained_model_path, subfolder="tokenizer")
text_encoder = CLIPTextModel.from_pretrained(pretrained_model_path, subfolder="text_encoder")
if not image_finetune:
unet = UNet3DConditionModel.from_pretrained_2d(
pretrained_model_path, subfolder="unet",
unet_additional_kwargs=OmegaConf.to_container(unet_additional_kwargs)
)
else:
unet = UNet2DConditionModel.from_pretrained(pretrained_model_path, subfolder="unet")
# Load pretrained unet weights
if unet_checkpoint_path != "":
zero_rank_print(f"from checkpoint: {unet_checkpoint_path}")
unet_checkpoint_path = torch.load(unet_checkpoint_path, map_location="cpu")
if "global_step" in unet_checkpoint_path: zero_rank_print(f"global_step: {unet_checkpoint_path['global_step']}")
state_dict = unet_checkpoint_path["state_dict"] if "state_dict" in unet_checkpoint_path else unet_checkpoint_path
m, u = unet.load_state_dict(state_dict, strict=False)
zero_rank_print(f"missing keys: {len(m)}, unexpected keys: {len(u)}")
#assert len(u) == 0
old_weights = unet.conv_in.weight
old_bias = unet.conv_in.bias
new_conv1 = InflatedConv3d(9, old_weights.shape[0], kernel_size=unet.conv_in.kernel_size, stride=unet.conv_in.stride, padding=unet.conv_in.padding, bias=True if old_bias is not None else False)
param = torch.zeros((320,5,3,3),requires_grad=True)
new_conv1.weight = torch.nn.Parameter(torch.cat((old_weights,param),dim=1))
if old_bias is not None:
new_conv1.bias = old_bias
unet.conv_in = new_conv1
unet.config["in_channels"] = 9
# Load webvid-Pretrained sd
'''webvid_sd_ckpt = torch.load(pretrained_sd_path)
unet.load_state_dict(webvid_sd_ckpt, strict=False)
vae.load_state_dict(webvid_sd_ckpt, strict=False)
print('Webvid_pretrained sd loaded')'''
# Freeze vae and text_encoder
vae.requires_grad_(False)
text_encoder.requires_grad_(False)
# Set unet trainable parameters
unet.requires_grad_(False)
for name, param in unet.named_parameters():
for trainable_module_name in trainable_modules:
if trainable_module_name in name:
logging.info(f'{name} is trainable \n')
#print(f'{name} is trainable')
param.requires_grad = True
break
# Load pre-trained motion module
unet_state_dict = unet.state_dict().keys()
pretrained_motion_module = torch.load(pretrained_motion_module_path)
for (name, param) in zip(pretrained_motion_module.keys(), pretrained_motion_module.values()):
if name in unet_state_dict:
unet.state_dict()[name].copy_(param)
#print(f"{name} weight replace")
trainable_params = list(filter(lambda p: p.requires_grad, unet.parameters()))
optimizer = torch.optim.AdamW(
trainable_params,
lr=learning_rate,
betas=(adam_beta1, adam_beta2),
weight_decay=adam_weight_decay,
eps=adam_epsilon,
)
if is_main_process:
zero_rank_print(f"trainable params number: {len(trainable_params)}")
zero_rank_print(f"trainable params scale: {sum(p.numel() for p in trainable_params) / 1e6:.3f} M")
# Enable xformers
if enable_xformers_memory_efficient_attention:
if is_xformers_available():
unet.enable_xformers_memory_efficient_attention()
else:
raise ValueError("xformers is not available. Make sure it is installed correctly")
# Enable gradient checkpointing
if gradient_checkpointing:
unet.enable_gradient_checkpointing()
# Move models to GPU
vae.to(local_rank)
text_encoder.to(local_rank)
# Get the training dataset
train_dataset = WebVid10M(**train_data, is_image=image_finetune)
distributed_sampler = DistributedSampler(
train_dataset,
num_replicas=num_processes,
rank=global_rank,
shuffle=True,
seed=global_seed,
)
# DataLoaders creation:
train_dataloader = torch.utils.data.DataLoader(
train_dataset,
batch_size=train_batch_size,
shuffle=False,
sampler=distributed_sampler,
num_workers=num_workers,
pin_memory=True,
drop_last=True,
)
# Get the training iteration
if max_train_steps == -1:
assert max_train_epoch != -1
max_train_steps = max_train_epoch * len(train_dataloader)
if checkpointing_steps == -1:
assert checkpointing_epochs != -1
checkpointing_steps = checkpointing_epochs * len(train_dataloader)
if scale_lr:
learning_rate = (learning_rate * gradient_accumulation_steps * train_batch_size * num_processes)
# Scheduler
lr_scheduler = get_scheduler(
lr_scheduler,
optimizer=optimizer,
num_warmup_steps=lr_warmup_steps * gradient_accumulation_steps,
num_training_steps=max_train_steps * gradient_accumulation_steps,
)
# Validation pipeline
if not image_finetune:
validation_pipeline = ValidationPipeline(
unet=unet, vae=vae, tokenizer=tokenizer, text_encoder=text_encoder, scheduler=noise_scheduler,
).to(local_rank)
else:
validation_pipeline = ValidationPipeline(
unet=unet, vae=vae, tokenizer=tokenizer, text_encoder=text_encoder, scheduler=noise_scheduler,
).to(local_rank)
validation_pipeline.enable_vae_slicing()
# DDP warpper
unet.to(local_rank)
unet = DDP(unet, device_ids=[local_rank], output_device=local_rank)
# We need to recalculate our total training steps as the size of the training dataloader may have changed.
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / gradient_accumulation_steps)
# Afterwards we recalculate our number of training epochs
num_train_epochs = math.ceil(max_train_steps / num_update_steps_per_epoch)
# Train!
total_batch_size = train_batch_size * num_processes * gradient_accumulation_steps
if is_main_process:
logging.info("***** Running training *****")
logging.info(f" Num examples = {len(train_dataset)}")
logging.info(f" Num Epochs = {num_train_epochs}")
logging.info(f" Instantaneous batch size per device = {train_batch_size}")
logging.info(f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}")
logging.info(f" Gradient Accumulation steps = {gradient_accumulation_steps}")
logging.info(f" Total optimization steps = {max_train_steps}")
global_step = 0
first_epoch = 0
# Only show the progress bar once on each machine.
progress_bar = tqdm(range(global_step, max_train_steps), disable=not is_main_process)
progress_bar.set_description("Steps")
# Support mixed-precision training
scaler = torch.cuda.amp.GradScaler() if mixed_precision_training else None
motion_module_trainable = False
for epoch in range(first_epoch, num_train_epochs):
train_dataloader.sampler.set_epoch(epoch)
unet.train()
for step, batch in enumerate(train_dataloader):
if cfg_random_null_text:
batch['text'] = [name if random.random() > cfg_random_null_text_ratio else "" for name in batch['text']]
# Data batch sanity check
if epoch == first_epoch and step == 0:
pixel_values, texts = batch['pixel_values'].cpu(), batch['text']
### >>>> Training >>>> ###
# Convert videos to latent space, sampling from video
pixel_values = batch["pixel_values"].to(local_rank)
video_length = pixel_values.shape[1]
# scores (b f) cond_frames(b f)
scores = batch['score']
scores = torch.stack([score for score in scores])
cond_frames = batch['cond_frames']
with torch.no_grad():
if not image_finetune:
pixel_values = rearrange(pixel_values, "b f c h w -> (b f) c h w")
latents = vae.encode(pixel_values).latent_dist
latents = latents.sample()
latents = rearrange(latents, "(b f) c h w -> b c f h w", f=video_length)
else:
latents = vae.encode(pixel_values).latent_dist
latents = latents.sample()
latents = latents * 0.18215
pixel_values = rearrange(pixel_values, "(b f) c h w -> b f c h w", f=video_length)
pixel_values = pixel_values / 2. + 0.5
pixel_values*= 255
# Create Mask and Masked_image_latent
# b c f h w
mask = torch.zeros((latents.shape[0], 1, latents.shape[2], latents.shape[3], latents.shape[4]))
masked_image = torch.zeros_like(latents)
'''rand_mask = random.random()
if rand_mask > 0.2:
rand_frame = random.randint(0, video_length - 1)
mask[:,:,rand_frame,:,:] = 1
for f in range(video_length):
masked_image[:,:,f,:,:] = latents[:,:,rand_frame,:,:].clone()
else:
masked_image = torch.zeros_like(latents)
mask = torch.zeros((latents.shape[0], 1, latents.shape[2], latents.shape[3], latents.shape[4]))'''
is_cond = random.random()
rand_size = latents.shape[0]
if is_cond > 0.2:
for rs in range(rand_size):
#rand_frame = random.randint(0, video_length - 1)
video_shape = [pixel_values.shape[0], pixel_values.shape[1]]
mask_coef = prepare_mask_coef_by_score(video_shape, cond_frame_idx=cond_frames,
statistic=statistic, score=torch.tensor(scores).unsqueeze(0))
#mask_coef = prepare_mask_coef(video_length, rand_frame, mask_sim_range)
#mask[:,:,rand_frame,:,:] = 1
for f in range(video_length):
mask[rs,:,f,:,:] = mask_coef[rs, f]
masked_image[rs,:,f,:,:] = latents[rs,:,cond_frames[rs],:,:].clone()
else:
masked_image = torch.zeros_like(latents)
mask = torch.zeros((latents.shape[0], 1, latents.shape[2], latents.shape[3], latents.shape[4]))
'''mask[:,:,0,:,:] = 1
for f in range(video_length):
masked_image[:,:,f,:,:] = latents[:,:,0,:,:].clone()'''
# Sample noise that we'll add to the latents
noise = torch.randn_like(latents)
bsz = latents.shape[0]
# Sample a random timestep for each video
timesteps = torch.randint(0, noise_scheduler.config.num_train_timesteps, (bsz,), device=latents.device)
timesteps = timesteps.long()
# Add noise to the latents according to the noise magnitude at each timestep
# (this is the forward diffusion process)
noisy_latents = noise_scheduler.add_noise(latents, noise, timesteps)
# Get the text embedding for conditioning
with torch.no_grad():
prompt_ids = tokenizer(
batch['text'], max_length=tokenizer.model_max_length, padding="max_length", truncation=True, return_tensors="pt"
).input_ids.to(latents.device)
encoder_hidden_states = text_encoder(prompt_ids)[0]
# Get the target for loss depending on the prediction type
if noise_scheduler.config.prediction_type == "epsilon":
target = noise
elif noise_scheduler.config.prediction_type == "v_prediction":
raise NotImplementedError
else:
raise ValueError(f"Unknown prediction type {noise_scheduler.config.prediction_type}")
# Predict the noise residual and compute loss
# Mixed-precision training
with torch.cuda.amp.autocast(enabled=mixed_precision_training):
model_pred = unet(noisy_latents, mask, masked_image, timesteps, encoder_hidden_states).sample
loss = F.mse_loss(model_pred.float(), target.float(), reduction="mean")
loss = loss / gradient_accumulation_steps
'''if (step + 1) % gradient_accumulation_steps == 0:
optimizer.zero_grad()'''
# Backpropagate, accumulate gradient
if mixed_precision_training:
scaler.scale(loss).backward()
""" >>> gradient clipping >>> """
if (step + 1) % gradient_accumulation_steps == 0:
scaler.unscale_(optimizer)
torch.nn.utils.clip_grad_norm_(unet.parameters(), max_grad_norm)
# Calculate the gradient norm
if (step + 1) % gradient_accumulation_steps == 0:
if isinstance(unet.parameters(), torch.Tensor):
params = [unet.parameters()]
grads = [p.grad for p in params if p.grad is not None]
else:
grads = [p.grad for p in unet.parameters() if p.grad is not None]
total_norm = torch.norm(torch.stack([torch.norm(g.detach(), 2.0) for g in grads]), 2.0)
""" <<< gradient clipping <<< """
if (step + 1) % gradient_accumulation_steps == 0:
scaler.step(optimizer)
scaler.update()
else:
loss.backward()
""" >>> gradient clipping >>> """
torch.nn.utils.clip_grad_norm_(unet.parameters(), max_grad_norm)
# Calculate the gradient norm
if (step + 1) % gradient_accumulation_steps == 0:
if isinstance(unet.parameters(), torch.Tensor):
params = [unet.parameters()]
grads = [p.grad for p in params if p.grad is not None]
else:
grads = [p.grad for p in unet.parameters() if p.grad is not None]
total_norm = torch.norm(torch.stack([torch.norm(g.detach(), 2.0) for g in grads]), 2.0)
""" <<< gradient clipping <<< """
if (step + 1) % gradient_accumulation_steps == 0:
optimizer.step()
if (step + 1) % gradient_accumulation_steps == 0:
lr_scheduler.step()
optimizer.zero_grad()
progress_bar.update(1 * gradient_accumulation_steps)
global_step += 1
# Set motion module trainable TODO: Debug
'''if (motion_module_trainable == False) and (step > motion_module_trainable_step) and ((step + 1) % gradient_accumulation_steps == 0):
for name, param in unet.named_parameters():
if 'motion_modules.' in name:
logging.info(f'{name} is trainable \n')
#print(f'{name} is trainable')
param.requires_grad = True
zero_rank_print('motion module is trainable now!')
motion_module_trainable = True'''
### <<<< Training <<<< ###
# Wandb logging
if is_main_process and (not is_debug) and use_wandb and ((step + 1) % gradient_accumulation_steps == 0):
wandb.log({"gradient_norm": total_norm.item()}, step=global_step)
# Save checkpoint and Periodically validation
if is_main_process and (global_step % validation_steps == 0 or global_step in validation_steps_tuple):
samples = []
generator = torch.Generator(device=latents.device)
generator.manual_seed(global_seed)
height = train_data.sample_size[0] if not isinstance(train_data.sample_size, int) else train_data.sample_size
width = train_data.sample_size[1] if not isinstance(train_data.sample_size, int) else train_data.sample_size
prompts = validation_data.prompts[:2] if global_step < 1000 and (not image_finetune) else validation_data.prompts
for idx, prompt in enumerate(prompts):
use_image = False
if not image_finetune:
if idx < 2:
use_image = idx + 1
else:
use_image = False
sample = validation_pipeline(
prompt,
use_image = use_image,
generator = generator,
video_length = train_data.sample_n_frames,
height = 512,
width = 512,
**validation_data,
).videos
save_videos_grid(sample, f"{output_dir}/samples/sample-{global_step}/{idx}.gif")
samples.append(sample)
else:
sample = validation_pipeline(
prompt,
generator = generator,
height = height,
width = width,
num_inference_steps = validation_data.get("num_inference_steps", 25),
guidance_scale = validation_data.get("guidance_scale", 8.),
).images[0]
sample = torchvision.transforms.functional.to_tensor(sample)
samples.append(sample)
if not image_finetune:
samples = torch.concat(samples)
save_path = f"{output_dir}/samples/sample-{global_step}.gif"
save_videos_grid(samples, save_path)
else:
samples = torch.stack(samples)
save_path = f"{output_dir}/samples/sample-{global_step}.png"
torchvision.utils.save_image(samples, save_path, nrow=4)
logging.info(f"Saved samples to {save_path}")
save_path = os.path.join(output_dir, f"checkpoints")
state_dict = {
"epoch": epoch,
"global_step": global_step,
"state_dict": unet.state_dict(),
}
inpaint_ckpt = state_dict['state_dict']
trained_ckpt = {}
for (key, value) in zip(inpaint_ckpt.keys(), inpaint_ckpt.values()):
new_key = key.replace('module.', '')
trained_ckpt[new_key] = value
if step == len(train_dataloader) - 1:
torch.save(trained_ckpt, os.path.join(save_path, f"checkpoint-epoch-{epoch+1}.ckpt"))
else:
torch.save(trained_ckpt, os.path.join(save_path, f"checkpoint{step+1}.ckpt"))
logging.info(f"Saved state to {save_path} (global_step: {global_step})")
logging.info(f"(global_step: {global_step}) loss: {loss.detach().item()}")
logs = {"step_loss": loss.detach().item(), "lr": lr_scheduler.get_last_lr()[0]}
progress_bar.set_postfix(**logs)
if global_step >= max_train_steps:
break
dist.destroy_process_group()
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--config", type=str, required=True)
parser.add_argument("--launcher", type=str, choices=["pytorch", "slurm"], default="slurm")
parser.add_argument("--wandb", action="store_true", default=True)
args = parser.parse_args()
name = Path(args.config).stem
config = OmegaConf.load(args.config)
main(name=name, launcher=args.launcher, use_wandb=args.wandb, **config)
|