File size: 26,165 Bytes
a001281
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
import os
import math
import wandb
import random
import logging
import inspect
import argparse
import datetime
import subprocess

from pathlib import Path
from tqdm.auto import tqdm
from einops import rearrange
from omegaconf import OmegaConf
from safetensors import safe_open
from typing import Dict, Optional, Tuple

import torch
import torchvision
import torch.nn.functional as F
import torch.distributed as dist
from torch.optim.swa_utils import AveragedModel
from torch.utils.data.distributed import DistributedSampler
from torch.nn.parallel import DistributedDataParallel as DDP

import diffusers
from diffusers import AutoencoderKL, DDIMScheduler
from diffusers.models import UNet2DConditionModel
from diffusers.pipelines import StableDiffusionPipeline
from diffusers.optimization import get_scheduler
from diffusers.utils import check_min_version
from diffusers.utils.import_utils import is_xformers_available
from animatediff.models.resnet import InflatedConv3d

import transformers
from transformers import CLIPTextModel, CLIPTokenizer

from animatediff.data.dataset_web import WebVid10M
from animatediff.models.unet import UNet3DConditionModel
from animatediff.pipelines.pipeline_animation import AnimationPipeline
from animatediff.pipelines.validation_pipeline import ValidationPipeline
from animatediff.utils.util import save_videos_grid, zero_rank_print, prepare_mask_coef, prepare_mask_coef_by_score



def init_dist(launcher="slurm", backend='nccl', port=29500, **kwargs):
    """Initializes distributed environment."""
    if launcher == 'pytorch':
        rank = int(os.environ['RANK'])
        num_gpus = torch.cuda.device_count()
        local_rank = rank % num_gpus
        torch.cuda.set_device(local_rank)
        dist.init_process_group(backend=backend, **kwargs)

    elif launcher == 'slurm':
        proc_id = int(os.environ['SLURM_PROCID'])
        ntasks = int(os.environ['SLURM_NTASKS'])
        node_list = os.environ['SLURM_NODELIST']
        num_gpus = torch.cuda.device_count()
        local_rank = proc_id % num_gpus
        torch.cuda.set_device(local_rank)
        addr = subprocess.getoutput(
            f'scontrol show hostname {node_list} | head -n1')
        os.environ['MASTER_ADDR'] = addr
        os.environ['WORLD_SIZE'] = str(ntasks)
        os.environ['RANK'] = str(proc_id)
        port = os.environ.get('PORT', port)
        os.environ['MASTER_PORT'] = str(port)
        dist.init_process_group(backend=backend)
        zero_rank_print(f"proc_id: {proc_id}; local_rank: {local_rank}; ntasks: {ntasks}; node_list: {node_list}; num_gpus: {num_gpus}; addr: {addr}; port: {port}")

    else:
        raise NotImplementedError(f'Not implemented launcher type: `{launcher}`!')

    return local_rank



def main(
    image_finetune: bool,

    name: str,
    use_wandb: bool,
    launcher: str,

    output_dir: str,
    pretrained_model_path: str,

    train_data: Dict,
    validation_data: Dict,
    cfg_random_null_text: bool = True,
    cfg_random_null_text_ratio: float = 0.1,

    unet_checkpoint_path: str = "",
    unet_additional_kwargs: Dict = {},
    ema_decay: float = 0.9999,
    noise_scheduler_kwargs = None,

    max_train_epoch: int = -1,
    max_train_steps: int = 100,
    validation_steps: int = 100,
    validation_steps_tuple: Tuple = (-1,),

    learning_rate: float = 3e-5,
    scale_lr: bool = False,
    lr_warmup_steps: int = 0,
    lr_scheduler: str = "constant",

    trainable_modules: Tuple[str] = (None, ),
    num_workers: int = 32,
    train_batch_size: int = 1,
    adam_beta1: float = 0.9,
    adam_beta2: float = 0.999,
    adam_weight_decay: float = 1e-2,
    adam_epsilon: float = 1e-08,
    max_grad_norm: float = 1.0,
    gradient_accumulation_steps: int = 32,
    gradient_checkpointing: bool = False,
    checkpointing_epochs: int = 5,
    checkpointing_steps: int = -1,

    mixed_precision_training: bool = True,
    enable_xformers_memory_efficient_attention: bool = True,

    statistic: list = [1, 40],

    global_seed: int = 42,
    is_debug: bool = False,
    mask_frame: list = [0],
    pretrained_motion_module_path: str = '',
    pretrained_sd_path: str = '',
    mask_sim_range: list = [0.2, 1.0],
):
    check_min_version("0.10.0.dev0")

    # Initialize distributed training
    local_rank      = init_dist(launcher=launcher)
    global_rank     = dist.get_rank()
    num_processes   = dist.get_world_size()
    is_main_process = global_rank == 0

    seed = global_seed + global_rank
    torch.manual_seed(seed)

    # Logging folder
    folder_name = "debug" if is_debug else name + datetime.datetime.now().strftime("-%Y-%m-%dT%H-%M-%S")
    output_dir = os.path.join(output_dir, folder_name)
    if is_debug and os.path.exists(output_dir):
        os.system(f"rm -rf {output_dir}")

    *_, config = inspect.getargvalues(inspect.currentframe())

    # Make one log on every process with the configuration for debugging.
    logging.basicConfig(
        format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
        datefmt="%m/%d/%Y %H:%M:%S",
        level=logging.INFO,
        filemode='a',
        filename='train_v2_2.log',
    )

    if is_main_process and (not is_debug) and use_wandb:
        run = wandb.init(project="image2video", name=folder_name, config=config)

    # Handle the output folder creation
    if is_main_process:
        os.makedirs(output_dir, exist_ok=True)
        os.makedirs(f"{output_dir}/samples", exist_ok=True)
        os.makedirs(f"{output_dir}/sanity_check", exist_ok=True)
        os.makedirs(f"{output_dir}/checkpoints", exist_ok=True)
        OmegaConf.save(config, os.path.join(output_dir, 'config.yaml'))

    # Load scheduler, tokenizer and models.
    noise_scheduler = DDIMScheduler(**OmegaConf.to_container(noise_scheduler_kwargs))

    vae          = AutoencoderKL.from_pretrained(pretrained_model_path, subfolder="vae")
    tokenizer    = CLIPTokenizer.from_pretrained(pretrained_model_path, subfolder="tokenizer")
    text_encoder = CLIPTextModel.from_pretrained(pretrained_model_path, subfolder="text_encoder")
    if not image_finetune:
        unet = UNet3DConditionModel.from_pretrained_2d(
            pretrained_model_path, subfolder="unet",
            unet_additional_kwargs=OmegaConf.to_container(unet_additional_kwargs)
        )
    else:
        unet = UNet2DConditionModel.from_pretrained(pretrained_model_path, subfolder="unet")

    # Load pretrained unet weights
    if unet_checkpoint_path != "":
        zero_rank_print(f"from checkpoint: {unet_checkpoint_path}")
        unet_checkpoint_path = torch.load(unet_checkpoint_path, map_location="cpu")
        if "global_step" in unet_checkpoint_path: zero_rank_print(f"global_step: {unet_checkpoint_path['global_step']}")
        state_dict = unet_checkpoint_path["state_dict"] if "state_dict" in unet_checkpoint_path else unet_checkpoint_path

        m, u = unet.load_state_dict(state_dict, strict=False)
        zero_rank_print(f"missing keys: {len(m)}, unexpected keys: {len(u)}")
        #assert len(u) == 0

    old_weights = unet.conv_in.weight
    old_bias = unet.conv_in.bias
    new_conv1 = InflatedConv3d(9, old_weights.shape[0], kernel_size=unet.conv_in.kernel_size, stride=unet.conv_in.stride, padding=unet.conv_in.padding, bias=True if old_bias is not None else False)
    param = torch.zeros((320,5,3,3),requires_grad=True)
    new_conv1.weight = torch.nn.Parameter(torch.cat((old_weights,param),dim=1))
    if old_bias is not None:
        new_conv1.bias = old_bias
    unet.conv_in = new_conv1
    unet.config["in_channels"] = 9

    # Load webvid-Pretrained sd
    '''webvid_sd_ckpt = torch.load(pretrained_sd_path)
    unet.load_state_dict(webvid_sd_ckpt, strict=False)
    vae.load_state_dict(webvid_sd_ckpt, strict=False)
    print('Webvid_pretrained sd loaded')'''

    # Freeze vae and text_encoder
    vae.requires_grad_(False)
    text_encoder.requires_grad_(False)

    # Set unet trainable parameters
    unet.requires_grad_(False)
    for name, param in unet.named_parameters():
        for trainable_module_name in trainable_modules:
            if trainable_module_name in name:
                logging.info(f'{name} is trainable \n')
                #print(f'{name} is trainable')
                param.requires_grad = True
                break

    # Load pre-trained motion module
    unet_state_dict = unet.state_dict().keys()
    pretrained_motion_module = torch.load(pretrained_motion_module_path)
    for (name, param) in zip(pretrained_motion_module.keys(), pretrained_motion_module.values()):
        if name in unet_state_dict:
            unet.state_dict()[name].copy_(param)
            #print(f"{name} weight replace")

    trainable_params = list(filter(lambda p: p.requires_grad, unet.parameters()))

    optimizer = torch.optim.AdamW(
        trainable_params,
        lr=learning_rate,
        betas=(adam_beta1, adam_beta2),
        weight_decay=adam_weight_decay,
        eps=adam_epsilon,
    )


    if is_main_process:
        zero_rank_print(f"trainable params number: {len(trainable_params)}")
        zero_rank_print(f"trainable params scale: {sum(p.numel() for p in trainable_params) / 1e6:.3f} M")

    # Enable xformers
    if enable_xformers_memory_efficient_attention:
        if is_xformers_available():
            unet.enable_xformers_memory_efficient_attention()
        else:
            raise ValueError("xformers is not available. Make sure it is installed correctly")

    # Enable gradient checkpointing
    if gradient_checkpointing:
        unet.enable_gradient_checkpointing()

    # Move models to GPU
    vae.to(local_rank)
    text_encoder.to(local_rank)

    # Get the training dataset
    train_dataset = WebVid10M(**train_data, is_image=image_finetune)
    distributed_sampler = DistributedSampler(
        train_dataset,
        num_replicas=num_processes,
        rank=global_rank,
        shuffle=True,
        seed=global_seed,
    )

    # DataLoaders creation:
    train_dataloader = torch.utils.data.DataLoader(
        train_dataset,
        batch_size=train_batch_size,
        shuffle=False,
        sampler=distributed_sampler,
        num_workers=num_workers,
        pin_memory=True,
        drop_last=True,
    )

    # Get the training iteration
    if max_train_steps == -1:
        assert max_train_epoch != -1
        max_train_steps = max_train_epoch * len(train_dataloader)

    if checkpointing_steps == -1:
        assert checkpointing_epochs != -1
        checkpointing_steps = checkpointing_epochs * len(train_dataloader)

    if scale_lr:
        learning_rate = (learning_rate * gradient_accumulation_steps * train_batch_size * num_processes)

    # Scheduler
    lr_scheduler = get_scheduler(
        lr_scheduler,
        optimizer=optimizer,
        num_warmup_steps=lr_warmup_steps * gradient_accumulation_steps,
        num_training_steps=max_train_steps * gradient_accumulation_steps,
    )

    # Validation pipeline
    if not image_finetune:
        validation_pipeline = ValidationPipeline(
            unet=unet, vae=vae, tokenizer=tokenizer, text_encoder=text_encoder, scheduler=noise_scheduler,
        ).to(local_rank)
    else:
        validation_pipeline = ValidationPipeline(
            unet=unet, vae=vae, tokenizer=tokenizer, text_encoder=text_encoder, scheduler=noise_scheduler,
        ).to(local_rank)
    validation_pipeline.enable_vae_slicing()

    # DDP warpper
    unet.to(local_rank)
    unet = DDP(unet, device_ids=[local_rank], output_device=local_rank)

    # We need to recalculate our total training steps as the size of the training dataloader may have changed.
    num_update_steps_per_epoch = math.ceil(len(train_dataloader) / gradient_accumulation_steps)
    # Afterwards we recalculate our number of training epochs
    num_train_epochs = math.ceil(max_train_steps / num_update_steps_per_epoch)

    # Train!
    total_batch_size = train_batch_size * num_processes * gradient_accumulation_steps

    if is_main_process:
        logging.info("***** Running training *****")
        logging.info(f"  Num examples = {len(train_dataset)}")
        logging.info(f"  Num Epochs = {num_train_epochs}")
        logging.info(f"  Instantaneous batch size per device = {train_batch_size}")
        logging.info(f"  Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}")
        logging.info(f"  Gradient Accumulation steps = {gradient_accumulation_steps}")
        logging.info(f"  Total optimization steps = {max_train_steps}")
    global_step = 0
    first_epoch = 0

    # Only show the progress bar once on each machine.
    progress_bar = tqdm(range(global_step, max_train_steps), disable=not is_main_process)
    progress_bar.set_description("Steps")

    # Support mixed-precision training
    scaler = torch.cuda.amp.GradScaler() if mixed_precision_training else None

    motion_module_trainable = False
    for epoch in range(first_epoch, num_train_epochs):
        train_dataloader.sampler.set_epoch(epoch)
        unet.train()

        for step, batch in enumerate(train_dataloader):
            if cfg_random_null_text:
                batch['text'] = [name if random.random() > cfg_random_null_text_ratio else "" for name in batch['text']]

            # Data batch sanity check
            if epoch == first_epoch and step == 0:
                pixel_values, texts = batch['pixel_values'].cpu(), batch['text']

            ### >>>> Training >>>> ###

            # Convert videos to latent space, sampling from video
            pixel_values = batch["pixel_values"].to(local_rank)
            video_length = pixel_values.shape[1]
            # scores (b f)  cond_frames(b f)
            scores       = batch['score']
            scores       = torch.stack([score for score in scores])
            cond_frames  = batch['cond_frames']            

            with torch.no_grad():
                if not image_finetune:
                    pixel_values = rearrange(pixel_values, "b f c h w -> (b f) c h w")
                    latents = vae.encode(pixel_values).latent_dist
                    latents = latents.sample()
                    latents = rearrange(latents, "(b f) c h w -> b c f h w", f=video_length)
                else:
                    latents = vae.encode(pixel_values).latent_dist
                    latents = latents.sample()

                latents = latents * 0.18215

                pixel_values = rearrange(pixel_values, "(b f) c h w -> b f c h w", f=video_length)
                pixel_values = pixel_values / 2. + 0.5
                pixel_values*= 255

                # Create Mask and Masked_image_latent
                # b c f h w
                mask = torch.zeros((latents.shape[0], 1, latents.shape[2], latents.shape[3], latents.shape[4]))
                masked_image = torch.zeros_like(latents)

                '''rand_mask = random.random()
                if rand_mask > 0.2:
                    rand_frame = random.randint(0, video_length - 1)
                    mask[:,:,rand_frame,:,:] = 1
                    for f in range(video_length):
                            masked_image[:,:,f,:,:] = latents[:,:,rand_frame,:,:].clone()
                else:
                    masked_image = torch.zeros_like(latents)
                    mask         = torch.zeros((latents.shape[0], 1, latents.shape[2], latents.shape[3], latents.shape[4]))'''

                is_cond   = random.random()
                rand_size = latents.shape[0]
                if is_cond > 0.2:
                    for rs in range(rand_size):
                        #rand_frame  = random.randint(0, video_length - 1)
                        video_shape = [pixel_values.shape[0], pixel_values.shape[1]] 
                        mask_coef   = prepare_mask_coef_by_score(video_shape, cond_frame_idx=cond_frames,
                                    statistic=statistic, score=torch.tensor(scores).unsqueeze(0))
                        #mask_coef  = prepare_mask_coef(video_length, rand_frame, mask_sim_range)
                    #mask[:,:,rand_frame,:,:] = 1
                        for f in range(video_length):
                            mask[rs,:,f,:,:]         = mask_coef[rs, f]
                            masked_image[rs,:,f,:,:] = latents[rs,:,cond_frames[rs],:,:].clone()
                else:
                    masked_image = torch.zeros_like(latents)
                    mask         = torch.zeros((latents.shape[0], 1, latents.shape[2], latents.shape[3], latents.shape[4]))
                '''mask[:,:,0,:,:] = 1
                for f in range(video_length):
                    masked_image[:,:,f,:,:] = latents[:,:,0,:,:].clone()'''


            # Sample noise that we'll add to the latents
            noise = torch.randn_like(latents)
            bsz = latents.shape[0]

            # Sample a random timestep for each video
            timesteps = torch.randint(0, noise_scheduler.config.num_train_timesteps, (bsz,), device=latents.device)
            timesteps = timesteps.long()

            # Add noise to the latents according to the noise magnitude at each timestep
            # (this is the forward diffusion process)
            noisy_latents = noise_scheduler.add_noise(latents, noise, timesteps)

            # Get the text embedding for conditioning
            with torch.no_grad():
                prompt_ids = tokenizer(
                    batch['text'], max_length=tokenizer.model_max_length, padding="max_length", truncation=True, return_tensors="pt"
                ).input_ids.to(latents.device)
                encoder_hidden_states = text_encoder(prompt_ids)[0]

            # Get the target for loss depending on the prediction type
            if noise_scheduler.config.prediction_type == "epsilon":
                target = noise
            elif noise_scheduler.config.prediction_type == "v_prediction":
                raise NotImplementedError
            else:
                raise ValueError(f"Unknown prediction type {noise_scheduler.config.prediction_type}")

            # Predict the noise residual and compute loss
            # Mixed-precision training
            with torch.cuda.amp.autocast(enabled=mixed_precision_training):
                model_pred = unet(noisy_latents, mask, masked_image, timesteps, encoder_hidden_states).sample
                loss = F.mse_loss(model_pred.float(), target.float(), reduction="mean")

            loss = loss / gradient_accumulation_steps
            '''if (step + 1) % gradient_accumulation_steps == 0:
                optimizer.zero_grad()'''

            # Backpropagate, accumulate gradient
            if mixed_precision_training:
                scaler.scale(loss).backward()
                """ >>> gradient clipping >>> """
                if (step + 1) % gradient_accumulation_steps == 0:
                    scaler.unscale_(optimizer)
                torch.nn.utils.clip_grad_norm_(unet.parameters(), max_grad_norm)

                # Calculate the gradient norm
                if (step + 1) % gradient_accumulation_steps == 0:
                    if isinstance(unet.parameters(), torch.Tensor):
                        params = [unet.parameters()]
                        grads  = [p.grad for p in params if p.grad is not None]
                    else:
                        grads = [p.grad for p in unet.parameters() if p.grad is not None]
                    total_norm = torch.norm(torch.stack([torch.norm(g.detach(), 2.0) for g in grads]), 2.0)

                """ <<< gradient clipping <<< """
                if (step + 1) % gradient_accumulation_steps == 0:
                    scaler.step(optimizer)
                    scaler.update()
            else:
                loss.backward()
                """ >>> gradient clipping >>> """
                torch.nn.utils.clip_grad_norm_(unet.parameters(), max_grad_norm)

                # Calculate the gradient norm
                if (step + 1) % gradient_accumulation_steps == 0:
                    if isinstance(unet.parameters(), torch.Tensor):
                        params = [unet.parameters()]
                        grads  = [p.grad for p in params if p.grad is not None]
                    else:
                        grads = [p.grad for p in unet.parameters() if p.grad is not None]
                    total_norm = torch.norm(torch.stack([torch.norm(g.detach(), 2.0) for g in grads]), 2.0)

                """ <<< gradient clipping <<< """
                if (step + 1) % gradient_accumulation_steps == 0:
                    optimizer.step()

            if (step + 1) % gradient_accumulation_steps == 0:
                lr_scheduler.step()
                optimizer.zero_grad()
                progress_bar.update(1 * gradient_accumulation_steps)

            global_step += 1

            # Set motion module trainable TODO: Debug
            '''if (motion_module_trainable == False) and (step > motion_module_trainable_step) and ((step + 1) % gradient_accumulation_steps == 0):
                for name, param in unet.named_parameters():
                    if 'motion_modules.' in name:
                        logging.info(f'{name} is trainable \n')
                        #print(f'{name} is trainable')
                        param.requires_grad = True
                zero_rank_print('motion module is trainable now!')
                motion_module_trainable = True'''


            ### <<<< Training <<<< ###

            # Wandb logging
            if is_main_process and (not is_debug) and use_wandb and ((step + 1) % gradient_accumulation_steps == 0):
                wandb.log({"gradient_norm": total_norm.item()}, step=global_step)

            # Save checkpoint and Periodically validation
            if is_main_process and (global_step % validation_steps == 0 or global_step in validation_steps_tuple):
                samples = []

                generator = torch.Generator(device=latents.device)
                generator.manual_seed(global_seed)

                height = train_data.sample_size[0] if not isinstance(train_data.sample_size, int) else train_data.sample_size
                width  = train_data.sample_size[1] if not isinstance(train_data.sample_size, int) else train_data.sample_size

                prompts = validation_data.prompts[:2] if global_step < 1000 and (not image_finetune) else validation_data.prompts

                for idx, prompt in enumerate(prompts):
                    use_image = False
                    if not image_finetune:
                        if idx < 2:
                            use_image = idx + 1
                        else:
                            use_image = False
                        sample = validation_pipeline(
                            prompt,
                            use_image    = use_image,
                            generator    = generator,
                            video_length = train_data.sample_n_frames,
                            height       = 512,
                            width        = 512,
                            **validation_data,
                        ).videos
                        save_videos_grid(sample, f"{output_dir}/samples/sample-{global_step}/{idx}.gif")
                        samples.append(sample)

                    else:
                        sample = validation_pipeline(
                            prompt,
                            generator           = generator,
                            height              = height,
                            width               = width,
                            num_inference_steps = validation_data.get("num_inference_steps", 25),
                            guidance_scale      = validation_data.get("guidance_scale", 8.),
                        ).images[0]
                        sample = torchvision.transforms.functional.to_tensor(sample)
                        samples.append(sample)

                if not image_finetune:
                    samples = torch.concat(samples)
                    save_path = f"{output_dir}/samples/sample-{global_step}.gif"
                    save_videos_grid(samples, save_path)

                else:
                    samples = torch.stack(samples)
                    save_path = f"{output_dir}/samples/sample-{global_step}.png"
                    torchvision.utils.save_image(samples, save_path, nrow=4)

                logging.info(f"Saved samples to {save_path}")

                save_path = os.path.join(output_dir, f"checkpoints")
                state_dict = {
                    "epoch": epoch,
                    "global_step": global_step,
                    "state_dict": unet.state_dict(),
                }
                inpaint_ckpt = state_dict['state_dict']
                trained_ckpt = {}
                for (key, value) in zip(inpaint_ckpt.keys(), inpaint_ckpt.values()):
                    new_key = key.replace('module.', '')
                    trained_ckpt[new_key] = value
                if step == len(train_dataloader) - 1:
                    torch.save(trained_ckpt, os.path.join(save_path, f"checkpoint-epoch-{epoch+1}.ckpt"))
                else:
                    torch.save(trained_ckpt, os.path.join(save_path, f"checkpoint{step+1}.ckpt"))

                logging.info(f"Saved state to {save_path} (global_step: {global_step})")
                logging.info(f"(global_step: {global_step}) loss: {loss.detach().item()}")

            logs = {"step_loss": loss.detach().item(), "lr": lr_scheduler.get_last_lr()[0]}
            progress_bar.set_postfix(**logs)

            if global_step >= max_train_steps:
                break

    dist.destroy_process_group()



if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument("--config",   type=str, required=True)
    parser.add_argument("--launcher", type=str, choices=["pytorch", "slurm"], default="slurm")
    parser.add_argument("--wandb",    action="store_true", default=True)
    args = parser.parse_args()

    name   = Path(args.config).stem
    config = OmegaConf.load(args.config)

    main(name=name, launcher=args.launcher, use_wandb=args.wandb, **config)