File size: 16,105 Bytes
a001281
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
import json
import os
import os.path as osp
import random
from argparse import ArgumentParser
from datetime import datetime

import gradio as gr
import numpy as np
import openxlab
import torch
from diffusers import DDIMScheduler, EulerDiscreteScheduler, PNDMScheduler
from omegaconf import OmegaConf
from openxlab.model import download
from PIL import Image

from animatediff.pipelines import I2VPipeline
from animatediff.utils.util import RANGE_LIST, save_videos_grid

sample_idx = 0
scheduler_dict = {
    "DDIM": DDIMScheduler,
    "Euler": EulerDiscreteScheduler,
    "PNDM": PNDMScheduler,
}

css = """
.toolbutton {
    margin-buttom: 0em 0em 0em 0em;
    max-width: 2.5em;
    min-width: 2.5em !important;
    height: 2.5em;
}
"""

parser = ArgumentParser()
parser.add_argument('--config', type=str, default='example/config/base.yaml')
parser.add_argument('--server-name', type=str, default='0.0.0.0')
parser.add_argument('--port', type=int, default=7860)
parser.add_argument('--share', action='store_true')
parser.add_argument('--local-debug', action='store_true')

parser.add_argument('--save-path', default='samples')

args = parser.parse_args()
LOCAL_DEBUG = args.local_debug


BASE_CONFIG = 'example/config/base.yaml'
STYLE_CONFIG_LIST = {
    'anime': './example/openxlab/2-animation.yaml',
}


# download models
PIA_PATH = './models/PIA'
VAE_PATH = './models/VAE'
DreamBooth_LoRA_PATH = './models/DreamBooth_LoRA'


if not LOCAL_DEBUG:
    CACHE_PATH = '/home/xlab-app-center/.cache/model'

    PIA_PATH = osp.join(CACHE_PATH, 'PIA')
    VAE_PATH = osp.join(CACHE_PATH, 'VAE')
    DreamBooth_LoRA_PATH = osp.join(CACHE_PATH, 'DreamBooth_LoRA')
    STABLE_DIFFUSION_PATH = osp.join(CACHE_PATH, 'StableDiffusion')

    IP_ADAPTER_PATH = osp.join(CACHE_PATH, 'IP_Adapter')

    os.makedirs(PIA_PATH, exist_ok=True)
    os.makedirs(VAE_PATH, exist_ok=True)
    os.makedirs(DreamBooth_LoRA_PATH, exist_ok=True)
    os.makedirs(STABLE_DIFFUSION_PATH, exist_ok=True)

    openxlab.login(os.environ['OPENXLAB_AK'], os.environ['OPENXLAB_SK'])
    download(model_repo='zhangyiming/PIA-pruned', model_name='PIA', output=PIA_PATH)
    download(model_repo='zhangyiming/Counterfeit-V3.0',
             model_name='Counterfeit-V3.0_fp32_pruned', output=DreamBooth_LoRA_PATH)
    download(model_repo='zhangyiming/kl-f8-anime2_VAE',
             model_name='kl-f8-anime2', output=VAE_PATH)

    # ip_adapter
    download(model_repo='zhangyiming/IP-Adapter',
             model_name='clip_encoder', output=osp.join(IP_ADAPTER_PATH, 'image_encoder'))
    download(model_repo='zhangyiming/IP-Adapter',
             model_name='config', output=osp.join(IP_ADAPTER_PATH, 'image_encoder'))
    download(model_repo='zhangyiming/IP-Adapter',
             model_name='ip_adapter_sd15', output=IP_ADAPTER_PATH)

    # unet
    download(model_repo='zhangyiming/runwayml_stable-diffusion-v1-5_Unet',
             model_name='unet', output=osp.join(STABLE_DIFFUSION_PATH, 'unet'))
    download(model_repo='zhangyiming/runwayml_stable-diffusion-v1-5_Unet',
             model_name='config', output=osp.join(STABLE_DIFFUSION_PATH, 'unet'))

    # vae
    download(model_repo='zhangyiming/runwayml_stable-diffusion-v1-5_VAE',
             model_name='vae', output=osp.join(STABLE_DIFFUSION_PATH, 'vae'))
    download(model_repo='zhangyiming/runwayml_stable-diffusion-v1-5_VAE',
             model_name='config', output=osp.join(STABLE_DIFFUSION_PATH, 'vae'))

    # text encoder
    download(model_repo='zhangyiming/runwayml_stable-diffusion-v1-5_TextEncod',
             model_name='text_encoder', output=osp.join(STABLE_DIFFUSION_PATH, 'text_encoder'))
    download(model_repo='zhangyiming/runwayml_stable-diffusion-v1-5_TextEncod',
             model_name='config', output=osp.join(STABLE_DIFFUSION_PATH, 'text_encoder'))

    # tokenizer
    download(model_repo='zhangyiming/runwayml_stable-diffusion-v1-5_Tokenizer',
             model_name='merge', output=osp.join(STABLE_DIFFUSION_PATH, 'tokenizer'))
    download(model_repo='zhangyiming/runwayml_stable-diffusion-v1-5_Tokenizer',
             model_name='special_tokens_map', output=osp.join(STABLE_DIFFUSION_PATH, 'tokenizer'))
    download(model_repo='zhangyiming/runwayml_stable-diffusion-v1-5_Tokenizer',
             model_name='tokenizer_config', output=osp.join(STABLE_DIFFUSION_PATH, 'tokenizer'))
    download(model_repo='zhangyiming/runwayml_stable-diffusion-v1-5_Tokenizer',
             model_name='vocab', output=osp.join(STABLE_DIFFUSION_PATH, 'tokenizer'))

    # scheduler
    scheduler_dict = {
        "_class_name": "PNDMScheduler",
        "_diffusers_version": "0.6.0",
        "beta_end": 0.012,
        "beta_schedule": "scaled_linear",
        "beta_start": 0.00085,
        "num_train_timesteps": 1000,
        "set_alpha_to_one": False,
        "skip_prk_steps": True,
        "steps_offset": 1,
        "trained_betas": None,
        "clip_sample": False
    }
    os.makedirs(osp.join(STABLE_DIFFUSION_PATH, 'scheduler'), exist_ok=True)
    with open(osp.join(STABLE_DIFFUSION_PATH, 'scheduler', 'scheduler_config.json'), 'w') as file:
        json.dump(scheduler_dict, file)

    # model index
    model_index_dict = {
        "_class_name": "StableDiffusionPipeline",
        "_diffusers_version": "0.6.0",
        "feature_extractor": [
            "transformers",
            "CLIPImageProcessor"
        ],
        "safety_checker": [
            "stable_diffusion",
            "StableDiffusionSafetyChecker"
        ],
        "scheduler": [
            "diffusers",
            "PNDMScheduler"
        ],
        "text_encoder": [
            "transformers",
            "CLIPTextModel"
        ],
        "tokenizer": [
            "transformers",
            "CLIPTokenizer"
        ],
        "unet": [
            "diffusers",
            "UNet2DConditionModel"
        ],
        "vae": [
            "diffusers",
            "AutoencoderKL"
        ]
    }
    with open(osp.join(STABLE_DIFFUSION_PATH, 'model_index.json'), 'w') as file:
        json.dump(model_index_dict, file)

else:
    PIA_PATH = './models/PIA'
    VAE_PATH = './models/VAE'
    DreamBooth_LoRA_PATH = './models/DreamBooth_LoRA'
    STABLE_DIFFUSION_PATH = './models/StableDiffusion/sd15'


def preprocess_img(img_np, max_size: int = 512):

    ori_image = Image.fromarray(img_np).convert('RGB')

    width, height = ori_image.size

    short_edge = max(width, height)
    if short_edge > max_size:
        scale_factor = max_size / short_edge
    else:
        scale_factor = 1
    width = int(width * scale_factor)
    height = int(height * scale_factor)
    ori_image = ori_image.resize((width, height))

    if (width % 8 != 0) or (height % 8 != 0):
        in_width = (width // 8) * 8
        in_height = (height // 8) * 8
    else:
        in_width = width
        in_height = height
        in_image = ori_image

    in_image = ori_image.resize((in_width, in_height))
    in_image_np = np.array(in_image)
    return in_image_np, in_height, in_width


class AnimateController:
    def __init__(self):

        # config dirs
        self.basedir = os.getcwd()
        self.savedir = os.path.join(
            self.basedir, args.save_path, datetime.now().strftime("Gradio-%Y-%m-%dT%H-%M-%S"))
        self.savedir_sample = os.path.join(self.savedir, "sample")
        os.makedirs(self.savedir, exist_ok=True)

        self.inference_config = OmegaConf.load(args.config)
        self.style_configs = {k: OmegaConf.load(
            v) for k, v in STYLE_CONFIG_LIST.items()}

        self.pipeline_dict = self.load_model_list()

    def load_model_list(self):
        pipeline_dict = dict()
        for style, cfg in self.style_configs.items():
            dreambooth_path = cfg.get('dreambooth', 'none')
            if dreambooth_path and dreambooth_path.upper() != 'NONE':
                dreambooth_path = osp.join(
                    DreamBooth_LoRA_PATH, dreambooth_path)
            lora_path = cfg.get('lora', None)
            if lora_path is not None:
                lora_path = osp.join(DreamBooth_LoRA_PATH, lora_path)
            lora_alpha = cfg.get('lora_alpha', 0.0)
            vae_path = cfg.get('vae', None)
            if vae_path is not None:
                vae_path = osp.join(VAE_PATH, vae_path)

            pipeline_dict[style] = I2VPipeline.build_pipeline(
                self.inference_config,
                STABLE_DIFFUSION_PATH,
                unet_path=osp.join(PIA_PATH, 'pia.ckpt'),
                dreambooth_path=dreambooth_path,
                lora_path=lora_path,
                lora_alpha=lora_alpha,
                vae_path=vae_path,
                ip_adapter_path='h94/IP-Adapter',
                ip_adapter_scale=0.1)
        return pipeline_dict

    def fetch_default_n_prompt(self, style: str):
        cfg = self.style_configs[style]
        n_prompt = cfg.get('n_prompt', '')
        ip_adapter_scale = cfg.get('real_ip_adapter_scale', 0)

        gr.Info('Set default negative prompt and ip_adapter_scale.')
        print('Set default negative prompt and ip_adapter_scale.')

        return n_prompt, ip_adapter_scale

    def animate(
        self,
        init_img,
        motion_scale,
        prompt_textbox,
        negative_prompt_textbox,
        sampler_dropdown,
        sample_step_slider,
        cfg_scale_slider,
        seed_textbox,
        ip_adapter_scale,
        style,
        progress=gr.Progress(),
    ):

        if seed_textbox != -1 and seed_textbox != "":
            torch.manual_seed(int(seed_textbox))
        else:
            torch.seed()
        seed = torch.initial_seed()

        pipeline = self.pipeline_dict[style]
        init_img, h, w = preprocess_img(init_img)

        sample = pipeline(
            image=init_img,
            prompt=prompt_textbox,
            negative_prompt=negative_prompt_textbox,
            num_inference_steps=sample_step_slider,
            guidance_scale=cfg_scale_slider,
            width=w,
            height=h,
            video_length=16,
            mask_sim_template_idx=motion_scale - 1,
            ip_adapter_scale=ip_adapter_scale,
            progress_fn=progress,
        ).videos

        save_sample_path = os.path.join(
            self.savedir_sample, f"{sample_idx}.mp4")
        save_videos_grid(sample, save_sample_path)

        sample_config = {
            "prompt": prompt_textbox,
            "n_prompt": negative_prompt_textbox,
            "sampler": sampler_dropdown,
            "num_inference_steps": sample_step_slider,
            "guidance_scale": cfg_scale_slider,
            "width": w,
            "height": h,
            "seed": seed,
            "motion": motion_scale,
        }
        json_str = json.dumps(sample_config, indent=4)
        with open(os.path.join(self.savedir, "logs.json"), "a") as f:
            f.write(json_str)
            f.write("\n\n")

        return save_sample_path


controller = AnimateController()


def ui():
    with gr.Blocks(css=css) as demo:

        gr.HTML(
            "<div align='center'><font size='7'> <img src=\"file/pia.png\" style=\"height: 72px;\"/ > Your Personalized Image Animator</font></div>"
            "<div align='center'><font size='7'>via Plug-and-Play Modules in Text-to-Image Models </font></div>"
        )
        with gr.Row():
            gr.Markdown(
                "<div align='center'><font size='5'><a href='https://pi-animator.github.io/'>Project Page</a> &ensp;"  # noqa
                "<a href='https://arxiv.org/abs/2312.13964/'>Paper</a> &ensp;"
                "<a href='https://github.com/open-mmlab/PIA'>Code</a> &ensp;"  # noqa
                # "Try More Style: <a href='https://openxlab.org.cn/apps/detail/zhangyiming/PiaPia'>Click Here!</a> </font></div>"  # noqa
                "Try More Style: <a href='https://openxlab.org.cn/apps/detail/zhangyiming/PiaPia'>Click here! </a></font></div>"  # noqa
            )

        with gr.Row(equal_height=False):
            with gr.Column():
                with gr.Row():
                    init_img = gr.Image(label='Input Image')

                style_dropdown = gr.Dropdown(label='Style', choices=list(
                    STYLE_CONFIG_LIST.keys()), value=list(STYLE_CONFIG_LIST.keys())[0])

                with gr.Row():
                    prompt_textbox = gr.Textbox(label="Prompt", lines=1)
                    gift_button = gr.Button(
                        value='🎁', elem_classes='toolbutton'
                    )

                def append_gift(prompt):
                    rand = random.randint(0, 2)
                    if rand == 1:
                        prompt = prompt + 'wearing santa hats'
                    elif rand == 2:
                        prompt = prompt + 'lift a Christmas gift'
                    else:
                        prompt = prompt + 'in Christmas suit, lift a Christmas gift'
                    gr.Info('Merry Christmas! Add magic to your prompt!')
                    return prompt

                gift_button.click(
                    fn=append_gift,
                    inputs=[prompt_textbox],
                    outputs=[prompt_textbox],
                )

                prompt_textbox = gr.Textbox(label="Prompt", lines=1)

                motion_scale_silder = gr.Slider(
                    label='Motion Scale (Larger value means larger motion but less identity consistency)', value=2, step=1, minimum=1, maximum=len(RANGE_LIST))
                ip_adapter_scale = gr.Slider(
                    label='IP-Apdater Scale', value=controller.fetch_default_n_prompt(
                        list(STYLE_CONFIG_LIST.keys())[0])[1], minimum=0, maximum=1)

                with gr.Accordion('Advance Options', open=False):
                    negative_prompt_textbox = gr.Textbox(
                        value=controller.fetch_default_n_prompt(
                            list(STYLE_CONFIG_LIST.keys())[0])[0],
                        label="Negative prompt", lines=2)

                    with gr.Row():
                        sampler_dropdown = gr.Dropdown(label="Sampling method", choices=list(
                            scheduler_dict.keys()), value=list(scheduler_dict.keys())[0])
                        sample_step_slider = gr.Slider(
                            label="Sampling steps", value=20, minimum=10, maximum=100, step=1)

                    cfg_scale_slider = gr.Slider(
                        label="CFG Scale", value=7.5, minimum=0, maximum=20)

                    with gr.Row():
                        seed_textbox = gr.Textbox(label="Seed", value=-1)
                        seed_button = gr.Button(
                            value="\U0001F3B2", elem_classes="toolbutton")
                    seed_button.click(
                        fn=lambda x: random.randint(1, 1e8),
                        outputs=[seed_textbox],
                        queue=False
                    )

                generate_button = gr.Button(
                    value="Generate", variant='primary')

            result_video = gr.Video(
                label="Generated Animation", interactive=False)

        style_dropdown.change(fn=controller.fetch_default_n_prompt,
                              inputs=[style_dropdown],
                              outputs=[negative_prompt_textbox, ip_adapter_scale], queue=False)

        generate_button.click(
            fn=controller.animate,
            inputs=[
                init_img,
                motion_scale_silder,
                prompt_textbox,
                negative_prompt_textbox,
                sampler_dropdown,
                sample_step_slider,
                cfg_scale_slider,
                seed_textbox,
                ip_adapter_scale,
                style_dropdown,
            ],
            outputs=[result_video]
        )

    return demo


if __name__ == "__main__":
    demo = ui()
    demo.queue(max_size=10)
    demo.launch(server_name=args.server_name,
                server_port=args.port, share=args.share,
                max_threads=10,
                allowed_paths=['pia.png'])