Spaces:
Runtime error
Runtime error
File size: 16,105 Bytes
a001281 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 |
import json
import os
import os.path as osp
import random
from argparse import ArgumentParser
from datetime import datetime
import gradio as gr
import numpy as np
import openxlab
import torch
from diffusers import DDIMScheduler, EulerDiscreteScheduler, PNDMScheduler
from omegaconf import OmegaConf
from openxlab.model import download
from PIL import Image
from animatediff.pipelines import I2VPipeline
from animatediff.utils.util import RANGE_LIST, save_videos_grid
sample_idx = 0
scheduler_dict = {
"DDIM": DDIMScheduler,
"Euler": EulerDiscreteScheduler,
"PNDM": PNDMScheduler,
}
css = """
.toolbutton {
margin-buttom: 0em 0em 0em 0em;
max-width: 2.5em;
min-width: 2.5em !important;
height: 2.5em;
}
"""
parser = ArgumentParser()
parser.add_argument('--config', type=str, default='example/config/base.yaml')
parser.add_argument('--server-name', type=str, default='0.0.0.0')
parser.add_argument('--port', type=int, default=7860)
parser.add_argument('--share', action='store_true')
parser.add_argument('--local-debug', action='store_true')
parser.add_argument('--save-path', default='samples')
args = parser.parse_args()
LOCAL_DEBUG = args.local_debug
BASE_CONFIG = 'example/config/base.yaml'
STYLE_CONFIG_LIST = {
'anime': './example/openxlab/2-animation.yaml',
}
# download models
PIA_PATH = './models/PIA'
VAE_PATH = './models/VAE'
DreamBooth_LoRA_PATH = './models/DreamBooth_LoRA'
if not LOCAL_DEBUG:
CACHE_PATH = '/home/xlab-app-center/.cache/model'
PIA_PATH = osp.join(CACHE_PATH, 'PIA')
VAE_PATH = osp.join(CACHE_PATH, 'VAE')
DreamBooth_LoRA_PATH = osp.join(CACHE_PATH, 'DreamBooth_LoRA')
STABLE_DIFFUSION_PATH = osp.join(CACHE_PATH, 'StableDiffusion')
IP_ADAPTER_PATH = osp.join(CACHE_PATH, 'IP_Adapter')
os.makedirs(PIA_PATH, exist_ok=True)
os.makedirs(VAE_PATH, exist_ok=True)
os.makedirs(DreamBooth_LoRA_PATH, exist_ok=True)
os.makedirs(STABLE_DIFFUSION_PATH, exist_ok=True)
openxlab.login(os.environ['OPENXLAB_AK'], os.environ['OPENXLAB_SK'])
download(model_repo='zhangyiming/PIA-pruned', model_name='PIA', output=PIA_PATH)
download(model_repo='zhangyiming/Counterfeit-V3.0',
model_name='Counterfeit-V3.0_fp32_pruned', output=DreamBooth_LoRA_PATH)
download(model_repo='zhangyiming/kl-f8-anime2_VAE',
model_name='kl-f8-anime2', output=VAE_PATH)
# ip_adapter
download(model_repo='zhangyiming/IP-Adapter',
model_name='clip_encoder', output=osp.join(IP_ADAPTER_PATH, 'image_encoder'))
download(model_repo='zhangyiming/IP-Adapter',
model_name='config', output=osp.join(IP_ADAPTER_PATH, 'image_encoder'))
download(model_repo='zhangyiming/IP-Adapter',
model_name='ip_adapter_sd15', output=IP_ADAPTER_PATH)
# unet
download(model_repo='zhangyiming/runwayml_stable-diffusion-v1-5_Unet',
model_name='unet', output=osp.join(STABLE_DIFFUSION_PATH, 'unet'))
download(model_repo='zhangyiming/runwayml_stable-diffusion-v1-5_Unet',
model_name='config', output=osp.join(STABLE_DIFFUSION_PATH, 'unet'))
# vae
download(model_repo='zhangyiming/runwayml_stable-diffusion-v1-5_VAE',
model_name='vae', output=osp.join(STABLE_DIFFUSION_PATH, 'vae'))
download(model_repo='zhangyiming/runwayml_stable-diffusion-v1-5_VAE',
model_name='config', output=osp.join(STABLE_DIFFUSION_PATH, 'vae'))
# text encoder
download(model_repo='zhangyiming/runwayml_stable-diffusion-v1-5_TextEncod',
model_name='text_encoder', output=osp.join(STABLE_DIFFUSION_PATH, 'text_encoder'))
download(model_repo='zhangyiming/runwayml_stable-diffusion-v1-5_TextEncod',
model_name='config', output=osp.join(STABLE_DIFFUSION_PATH, 'text_encoder'))
# tokenizer
download(model_repo='zhangyiming/runwayml_stable-diffusion-v1-5_Tokenizer',
model_name='merge', output=osp.join(STABLE_DIFFUSION_PATH, 'tokenizer'))
download(model_repo='zhangyiming/runwayml_stable-diffusion-v1-5_Tokenizer',
model_name='special_tokens_map', output=osp.join(STABLE_DIFFUSION_PATH, 'tokenizer'))
download(model_repo='zhangyiming/runwayml_stable-diffusion-v1-5_Tokenizer',
model_name='tokenizer_config', output=osp.join(STABLE_DIFFUSION_PATH, 'tokenizer'))
download(model_repo='zhangyiming/runwayml_stable-diffusion-v1-5_Tokenizer',
model_name='vocab', output=osp.join(STABLE_DIFFUSION_PATH, 'tokenizer'))
# scheduler
scheduler_dict = {
"_class_name": "PNDMScheduler",
"_diffusers_version": "0.6.0",
"beta_end": 0.012,
"beta_schedule": "scaled_linear",
"beta_start": 0.00085,
"num_train_timesteps": 1000,
"set_alpha_to_one": False,
"skip_prk_steps": True,
"steps_offset": 1,
"trained_betas": None,
"clip_sample": False
}
os.makedirs(osp.join(STABLE_DIFFUSION_PATH, 'scheduler'), exist_ok=True)
with open(osp.join(STABLE_DIFFUSION_PATH, 'scheduler', 'scheduler_config.json'), 'w') as file:
json.dump(scheduler_dict, file)
# model index
model_index_dict = {
"_class_name": "StableDiffusionPipeline",
"_diffusers_version": "0.6.0",
"feature_extractor": [
"transformers",
"CLIPImageProcessor"
],
"safety_checker": [
"stable_diffusion",
"StableDiffusionSafetyChecker"
],
"scheduler": [
"diffusers",
"PNDMScheduler"
],
"text_encoder": [
"transformers",
"CLIPTextModel"
],
"tokenizer": [
"transformers",
"CLIPTokenizer"
],
"unet": [
"diffusers",
"UNet2DConditionModel"
],
"vae": [
"diffusers",
"AutoencoderKL"
]
}
with open(osp.join(STABLE_DIFFUSION_PATH, 'model_index.json'), 'w') as file:
json.dump(model_index_dict, file)
else:
PIA_PATH = './models/PIA'
VAE_PATH = './models/VAE'
DreamBooth_LoRA_PATH = './models/DreamBooth_LoRA'
STABLE_DIFFUSION_PATH = './models/StableDiffusion/sd15'
def preprocess_img(img_np, max_size: int = 512):
ori_image = Image.fromarray(img_np).convert('RGB')
width, height = ori_image.size
short_edge = max(width, height)
if short_edge > max_size:
scale_factor = max_size / short_edge
else:
scale_factor = 1
width = int(width * scale_factor)
height = int(height * scale_factor)
ori_image = ori_image.resize((width, height))
if (width % 8 != 0) or (height % 8 != 0):
in_width = (width // 8) * 8
in_height = (height // 8) * 8
else:
in_width = width
in_height = height
in_image = ori_image
in_image = ori_image.resize((in_width, in_height))
in_image_np = np.array(in_image)
return in_image_np, in_height, in_width
class AnimateController:
def __init__(self):
# config dirs
self.basedir = os.getcwd()
self.savedir = os.path.join(
self.basedir, args.save_path, datetime.now().strftime("Gradio-%Y-%m-%dT%H-%M-%S"))
self.savedir_sample = os.path.join(self.savedir, "sample")
os.makedirs(self.savedir, exist_ok=True)
self.inference_config = OmegaConf.load(args.config)
self.style_configs = {k: OmegaConf.load(
v) for k, v in STYLE_CONFIG_LIST.items()}
self.pipeline_dict = self.load_model_list()
def load_model_list(self):
pipeline_dict = dict()
for style, cfg in self.style_configs.items():
dreambooth_path = cfg.get('dreambooth', 'none')
if dreambooth_path and dreambooth_path.upper() != 'NONE':
dreambooth_path = osp.join(
DreamBooth_LoRA_PATH, dreambooth_path)
lora_path = cfg.get('lora', None)
if lora_path is not None:
lora_path = osp.join(DreamBooth_LoRA_PATH, lora_path)
lora_alpha = cfg.get('lora_alpha', 0.0)
vae_path = cfg.get('vae', None)
if vae_path is not None:
vae_path = osp.join(VAE_PATH, vae_path)
pipeline_dict[style] = I2VPipeline.build_pipeline(
self.inference_config,
STABLE_DIFFUSION_PATH,
unet_path=osp.join(PIA_PATH, 'pia.ckpt'),
dreambooth_path=dreambooth_path,
lora_path=lora_path,
lora_alpha=lora_alpha,
vae_path=vae_path,
ip_adapter_path='h94/IP-Adapter',
ip_adapter_scale=0.1)
return pipeline_dict
def fetch_default_n_prompt(self, style: str):
cfg = self.style_configs[style]
n_prompt = cfg.get('n_prompt', '')
ip_adapter_scale = cfg.get('real_ip_adapter_scale', 0)
gr.Info('Set default negative prompt and ip_adapter_scale.')
print('Set default negative prompt and ip_adapter_scale.')
return n_prompt, ip_adapter_scale
def animate(
self,
init_img,
motion_scale,
prompt_textbox,
negative_prompt_textbox,
sampler_dropdown,
sample_step_slider,
cfg_scale_slider,
seed_textbox,
ip_adapter_scale,
style,
progress=gr.Progress(),
):
if seed_textbox != -1 and seed_textbox != "":
torch.manual_seed(int(seed_textbox))
else:
torch.seed()
seed = torch.initial_seed()
pipeline = self.pipeline_dict[style]
init_img, h, w = preprocess_img(init_img)
sample = pipeline(
image=init_img,
prompt=prompt_textbox,
negative_prompt=negative_prompt_textbox,
num_inference_steps=sample_step_slider,
guidance_scale=cfg_scale_slider,
width=w,
height=h,
video_length=16,
mask_sim_template_idx=motion_scale - 1,
ip_adapter_scale=ip_adapter_scale,
progress_fn=progress,
).videos
save_sample_path = os.path.join(
self.savedir_sample, f"{sample_idx}.mp4")
save_videos_grid(sample, save_sample_path)
sample_config = {
"prompt": prompt_textbox,
"n_prompt": negative_prompt_textbox,
"sampler": sampler_dropdown,
"num_inference_steps": sample_step_slider,
"guidance_scale": cfg_scale_slider,
"width": w,
"height": h,
"seed": seed,
"motion": motion_scale,
}
json_str = json.dumps(sample_config, indent=4)
with open(os.path.join(self.savedir, "logs.json"), "a") as f:
f.write(json_str)
f.write("\n\n")
return save_sample_path
controller = AnimateController()
def ui():
with gr.Blocks(css=css) as demo:
gr.HTML(
"<div align='center'><font size='7'> <img src=\"file/pia.png\" style=\"height: 72px;\"/ > Your Personalized Image Animator</font></div>"
"<div align='center'><font size='7'>via Plug-and-Play Modules in Text-to-Image Models </font></div>"
)
with gr.Row():
gr.Markdown(
"<div align='center'><font size='5'><a href='https://pi-animator.github.io/'>Project Page</a>  " # noqa
"<a href='https://arxiv.org/abs/2312.13964/'>Paper</a>  "
"<a href='https://github.com/open-mmlab/PIA'>Code</a>  " # noqa
# "Try More Style: <a href='https://openxlab.org.cn/apps/detail/zhangyiming/PiaPia'>Click Here!</a> </font></div>" # noqa
"Try More Style: <a href='https://openxlab.org.cn/apps/detail/zhangyiming/PiaPia'>Click here! </a></font></div>" # noqa
)
with gr.Row(equal_height=False):
with gr.Column():
with gr.Row():
init_img = gr.Image(label='Input Image')
style_dropdown = gr.Dropdown(label='Style', choices=list(
STYLE_CONFIG_LIST.keys()), value=list(STYLE_CONFIG_LIST.keys())[0])
with gr.Row():
prompt_textbox = gr.Textbox(label="Prompt", lines=1)
gift_button = gr.Button(
value='🎁', elem_classes='toolbutton'
)
def append_gift(prompt):
rand = random.randint(0, 2)
if rand == 1:
prompt = prompt + 'wearing santa hats'
elif rand == 2:
prompt = prompt + 'lift a Christmas gift'
else:
prompt = prompt + 'in Christmas suit, lift a Christmas gift'
gr.Info('Merry Christmas! Add magic to your prompt!')
return prompt
gift_button.click(
fn=append_gift,
inputs=[prompt_textbox],
outputs=[prompt_textbox],
)
prompt_textbox = gr.Textbox(label="Prompt", lines=1)
motion_scale_silder = gr.Slider(
label='Motion Scale (Larger value means larger motion but less identity consistency)', value=2, step=1, minimum=1, maximum=len(RANGE_LIST))
ip_adapter_scale = gr.Slider(
label='IP-Apdater Scale', value=controller.fetch_default_n_prompt(
list(STYLE_CONFIG_LIST.keys())[0])[1], minimum=0, maximum=1)
with gr.Accordion('Advance Options', open=False):
negative_prompt_textbox = gr.Textbox(
value=controller.fetch_default_n_prompt(
list(STYLE_CONFIG_LIST.keys())[0])[0],
label="Negative prompt", lines=2)
with gr.Row():
sampler_dropdown = gr.Dropdown(label="Sampling method", choices=list(
scheduler_dict.keys()), value=list(scheduler_dict.keys())[0])
sample_step_slider = gr.Slider(
label="Sampling steps", value=20, minimum=10, maximum=100, step=1)
cfg_scale_slider = gr.Slider(
label="CFG Scale", value=7.5, minimum=0, maximum=20)
with gr.Row():
seed_textbox = gr.Textbox(label="Seed", value=-1)
seed_button = gr.Button(
value="\U0001F3B2", elem_classes="toolbutton")
seed_button.click(
fn=lambda x: random.randint(1, 1e8),
outputs=[seed_textbox],
queue=False
)
generate_button = gr.Button(
value="Generate", variant='primary')
result_video = gr.Video(
label="Generated Animation", interactive=False)
style_dropdown.change(fn=controller.fetch_default_n_prompt,
inputs=[style_dropdown],
outputs=[negative_prompt_textbox, ip_adapter_scale], queue=False)
generate_button.click(
fn=controller.animate,
inputs=[
init_img,
motion_scale_silder,
prompt_textbox,
negative_prompt_textbox,
sampler_dropdown,
sample_step_slider,
cfg_scale_slider,
seed_textbox,
ip_adapter_scale,
style_dropdown,
],
outputs=[result_video]
)
return demo
if __name__ == "__main__":
demo = ui()
demo.queue(max_size=10)
demo.launch(server_name=args.server_name,
server_port=args.port, share=args.share,
max_threads=10,
allowed_paths=['pia.png'])
|