File size: 4,379 Bytes
a001281
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
# Adapted from https://github.com/showlab/Tune-A-Video/blob/main/tuneavideo/pipelines/pipeline_tuneavideo.py
import argparse
import os

import imageio
import numpy as np
import torch
from einops import rearrange
from omegaconf import OmegaConf
from PIL import Image

from animatediff.pipelines import I2VPipeline

N_PROMPT = 'worst quality,low quality'
GUIDANCE_SCALE = 7

BASE_CFG = './example/config/base.yaml'
I2V_MODEL = './models/PIA/pia.ckpt'
BASE_MODEL = './models/StableDiffusion/sd15'
DREAMBOOTH_PATH = './models/DreamBooth_LoRA/Counterfeit-V3.0_fp32.safetensors'


def post_process(videos: torch.Tensor):
    videos = rearrange(videos[0], "c t h w -> t h w c")
    videos = (videos * 255).clip(0, 255).cpu().numpy().astype(np.uint8)
    return videos


def seed_everything(seed):
    import random

    import numpy as np
    torch.manual_seed(seed)
    torch.cuda.manual_seed_all(seed)
    np.random.seed(seed % (2**32))
    random.seed(seed)


def preprocess_img(img_path):

    ori_image = Image.open(img_path).convert('RGB')

    width, height = ori_image.size

    long_edge = max(width, height)
    if long_edge > 512:
        scale_factor = 512 / long_edge
    else:
        scale_factor = 1
    width = int(width * scale_factor)
    height = int(height * scale_factor)
    ori_image = ori_image.resize((width, height))

    if (width % 8 != 0) or (height % 8 != 0):
        in_width = (width // 8) * 8
        in_height = (height // 8) * 8
    else:
        in_width = width
        in_height = height
        in_image = ori_image

    in_image = ori_image.resize((in_width, in_height))
    in_image_np = np.array(in_image)
    return in_image_np, in_height, in_width


if __name__ == '__main__':
    parser = argparse.ArgumentParser()
    parser.add_argument('--img', type=str)
    parser.add_argument("--config", type=str)

    parser.add_argument('--prompt', type=str)
    parser.add_argument('--save-name', type=str)
    parser.add_argument('--motion', type=int, default=2)
    parser.add_argument('--ip-scale', type=float, default=0.3)

    parser.add_argument('--strength', type=float, default=1)

    args = parser.parse_args()

    # prepare paths and pipeline
    if args.config:
        config = OmegaConf.load(args.config)
        print('Load DreamBooth, LoRA and other things from config:')
        print(config)
    else:
        config = dict()

    base_model_path = BASE_MODEL
    unet_path = I2V_MODEL
    dreambooth_path = config.get('dreambooth', DREAMBOOTH_PATH)
    vae_path = config.get('vae', None)
    lora_path = config.get('lora', None)
    lora_alpha = config.get('lora_alpha', 0)

    only_load_vae_decoder = config.get('only_load_vae_decoder', False)
    only_load_vae_encoder = config.get('only_load_vae_encoder', False)

    st_motion = config.get('st_motion', None)

    base_cfg = OmegaConf.load(BASE_CFG)
    validation_pipeline = I2VPipeline.build_pipeline(
        base_cfg,
        base_model_path,
        unet_path,
        dreambooth_path,
        lora_path,
        lora_alpha,
        vae_path,
        ip_adapter_path='./models/IP_Adapter/',
        ip_adapter_scale=args.ip_scale,
        only_load_vae_decoder=only_load_vae_decoder,
        only_load_vae_encoder=only_load_vae_encoder)

    print(f'using unet      : {unet_path}')
    print(f'using DreamBooth: {dreambooth_path}')
    print(f'using Lora      : {lora_path}')

    validation_pipeline.set_st_motion(st_motion)
    print(f'Set Style Transfer Motion: {validation_pipeline.st_motion}.')

    # load image
    image_in, height, width = preprocess_img(args.img)

    if config.get('suffix', None):
        prompt = config.suffix + ',' + args.prompt
    else:
        prompt = args.prompt

    sample = validation_pipeline(
        image=image_in,
        prompt=prompt,
        height=height,
        width=width,
        video_length=16,
        num_inference_steps=25,
        mask_sim_template_idx=args.motion,
        negative_prompt=config.get('n_prompt', N_PROMPT),
        guidance_scale=config.get('guidance_scale', GUIDANCE_SCALE),
        ip_adapter_scale=args.ip_scale,
        strength=args.strength
    ).videos

    save_name = args.save_name
    parent_name = os.path.dirname(save_name)
    if parent_name:
        os.makedirs(parent_name, exist_ok=True)
    imageio.mimsave(save_name, post_process(sample))

    print(" <<< Test Done <<<")