Spaces:
Runtime error
Runtime error
File size: 15,782 Bytes
b18cfd3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 |
// Copyright 2019 The TensorFlow Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
import Accelerate
import CoreImage
import Foundation
import TensorFlowLite
import UIKit
/// This class handles all data preprocessing and makes calls to run inference on a given frame
/// by invoking the `Interpreter`. It then formats the inferences obtained.
class ModelDataHandler {
// MARK: - Private Properties
/// TensorFlow Lite `Interpreter` object for performing inference on a given model.
private var interpreter: Interpreter
/// TensorFlow lite `Tensor` of model input and output.
private var inputTensor: Tensor
//private var heatsTensor: Tensor
//private var offsetsTensor: Tensor
private var outputTensor: Tensor
// MARK: - Initialization
/// A failable initializer for `ModelDataHandler`. A new instance is created if the model is
/// successfully loaded from the app's main bundle. Default `threadCount` is 2.
init(
threadCount: Int = Constants.defaultThreadCount,
delegate: Delegates = Constants.defaultDelegate
) throws {
// Construct the path to the model file.
guard
let modelPath = Bundle.main.path(
forResource: Model.file.name,
ofType: Model.file.extension
)
else {
fatalError("Failed to load the model file with name: \(Model.file.name).")
}
// Specify the options for the `Interpreter`.
var options = Interpreter.Options()
options.threadCount = threadCount
// Specify the delegates for the `Interpreter`.
var delegates: [Delegate]?
switch delegate {
case .Metal:
delegates = [MetalDelegate()]
case .CoreML:
if let coreMLDelegate = CoreMLDelegate() {
delegates = [coreMLDelegate]
} else {
delegates = nil
}
default:
delegates = nil
}
// Create the `Interpreter`.
interpreter = try Interpreter(modelPath: modelPath, options: options, delegates: delegates)
// Initialize input and output `Tensor`s.
// Allocate memory for the model's input `Tensor`s.
try interpreter.allocateTensors()
// Get allocated input and output `Tensor`s.
inputTensor = try interpreter.input(at: 0)
outputTensor = try interpreter.output(at: 0)
//heatsTensor = try interpreter.output(at: 0)
//offsetsTensor = try interpreter.output(at: 1)
/*
// Check if input and output `Tensor`s are in the expected formats.
guard (inputTensor.dataType == .uInt8) == Model.isQuantized else {
fatalError("Unexpected Model: quantization is \(!Model.isQuantized)")
}
guard inputTensor.shape.dimensions[0] == Model.input.batchSize,
inputTensor.shape.dimensions[1] == Model.input.height,
inputTensor.shape.dimensions[2] == Model.input.width,
inputTensor.shape.dimensions[3] == Model.input.channelSize
else {
fatalError("Unexpected Model: input shape")
}
guard heatsTensor.shape.dimensions[0] == Model.output.batchSize,
heatsTensor.shape.dimensions[1] == Model.output.height,
heatsTensor.shape.dimensions[2] == Model.output.width,
heatsTensor.shape.dimensions[3] == Model.output.keypointSize
else {
fatalError("Unexpected Model: heat tensor")
}
guard offsetsTensor.shape.dimensions[0] == Model.output.batchSize,
offsetsTensor.shape.dimensions[1] == Model.output.height,
offsetsTensor.shape.dimensions[2] == Model.output.width,
offsetsTensor.shape.dimensions[3] == Model.output.offsetSize
else {
fatalError("Unexpected Model: offset tensor")
}
*/
}
/// Runs Midas model with given image with given source area to destination area.
///
/// - Parameters:
/// - on: Input image to run the model.
/// - from: Range of input image to run the model.
/// - to: Size of view to render the result.
/// - Returns: Result of the inference and the times consumed in every steps.
func runMidas(on pixelbuffer: CVPixelBuffer, from source: CGRect, to dest: CGSize)
//-> (Result, Times)?
//-> (FlatArray<Float32>, Times)?
-> ([Float], Int, Int, Times)?
{
// Start times of each process.
let preprocessingStartTime: Date
let inferenceStartTime: Date
let postprocessingStartTime: Date
// Processing times in miliseconds.
let preprocessingTime: TimeInterval
let inferenceTime: TimeInterval
let postprocessingTime: TimeInterval
preprocessingStartTime = Date()
guard let data = preprocess(of: pixelbuffer, from: source) else {
os_log("Preprocessing failed", type: .error)
return nil
}
preprocessingTime = Date().timeIntervalSince(preprocessingStartTime) * 1000
inferenceStartTime = Date()
inference(from: data)
inferenceTime = Date().timeIntervalSince(inferenceStartTime) * 1000
postprocessingStartTime = Date()
//guard let result = postprocess(to: dest) else {
// os_log("Postprocessing failed", type: .error)
// return nil
//}
postprocessingTime = Date().timeIntervalSince(postprocessingStartTime) * 1000
let results: [Float]
switch outputTensor.dataType {
case .uInt8:
guard let quantization = outputTensor.quantizationParameters else {
print("No results returned because the quantization values for the output tensor are nil.")
return nil
}
let quantizedResults = [UInt8](outputTensor.data)
results = quantizedResults.map {
quantization.scale * Float(Int($0) - quantization.zeroPoint)
}
case .float32:
results = [Float32](unsafeData: outputTensor.data) ?? []
default:
print("Output tensor data type \(outputTensor.dataType) is unsupported for this example app.")
return nil
}
let times = Times(
preprocessing: preprocessingTime,
inference: inferenceTime,
postprocessing: postprocessingTime)
return (results, Model.input.width, Model.input.height, times)
}
// MARK: - Private functions to run model
/// Preprocesses given rectangle image to be `Data` of disired size by croping and resizing it.
///
/// - Parameters:
/// - of: Input image to crop and resize.
/// - from: Target area to be cropped and resized.
/// - Returns: The cropped and resized image. `nil` if it can not be processed.
private func preprocess(of pixelBuffer: CVPixelBuffer, from targetSquare: CGRect) -> Data? {
let sourcePixelFormat = CVPixelBufferGetPixelFormatType(pixelBuffer)
assert(sourcePixelFormat == kCVPixelFormatType_32BGRA)
// Resize `targetSquare` of input image to `modelSize`.
let modelSize = CGSize(width: Model.input.width, height: Model.input.height)
guard let thumbnail = pixelBuffer.resize(from: targetSquare, to: modelSize)
else {
return nil
}
// Remove the alpha component from the image buffer to get the initialized `Data`.
let byteCount =
Model.input.batchSize
* Model.input.height * Model.input.width
* Model.input.channelSize
guard
let inputData = thumbnail.rgbData(
isModelQuantized: Model.isQuantized
)
else {
os_log("Failed to convert the image buffer to RGB data.", type: .error)
return nil
}
return inputData
}
/*
/// Postprocesses output `Tensor`s to `Result` with size of view to render the result.
///
/// - Parameters:
/// - to: Size of view to be displaied.
/// - Returns: Postprocessed `Result`. `nil` if it can not be processed.
private func postprocess(to viewSize: CGSize) -> Result? {
// MARK: Formats output tensors
// Convert `Tensor` to `FlatArray`. As Midas is not quantized, convert them to Float type
// `FlatArray`.
let heats = FlatArray<Float32>(tensor: heatsTensor)
let offsets = FlatArray<Float32>(tensor: offsetsTensor)
// MARK: Find position of each key point
// Finds the (row, col) locations of where the keypoints are most likely to be. The highest
// `heats[0, row, col, keypoint]` value, the more likely `keypoint` being located in (`row`,
// `col`).
let keypointPositions = (0..<Model.output.keypointSize).map { keypoint -> (Int, Int) in
var maxValue = heats[0, 0, 0, keypoint]
var maxRow = 0
var maxCol = 0
for row in 0..<Model.output.height {
for col in 0..<Model.output.width {
if heats[0, row, col, keypoint] > maxValue {
maxValue = heats[0, row, col, keypoint]
maxRow = row
maxCol = col
}
}
}
return (maxRow, maxCol)
}
// MARK: Calculates total confidence score
// Calculates total confidence score of each key position.
let totalScoreSum = keypointPositions.enumerated().reduce(0.0) { accumulator, elem -> Float32 in
accumulator + sigmoid(heats[0, elem.element.0, elem.element.1, elem.offset])
}
let totalScore = totalScoreSum / Float32(Model.output.keypointSize)
// MARK: Calculate key point position on model input
// Calculates `KeyPoint` coordination model input image with `offsets` adjustment.
let coords = keypointPositions.enumerated().map { index, elem -> (y: Float32, x: Float32) in
let (y, x) = elem
let yCoord =
Float32(y) / Float32(Model.output.height - 1) * Float32(Model.input.height)
+ offsets[0, y, x, index]
let xCoord =
Float32(x) / Float32(Model.output.width - 1) * Float32(Model.input.width)
+ offsets[0, y, x, index + Model.output.keypointSize]
return (y: yCoord, x: xCoord)
}
// MARK: Transform key point position and make lines
// Make `Result` from `keypointPosition'. Each point is adjusted to `ViewSize` to be drawn.
var result = Result(dots: [], lines: [], score: totalScore)
var bodyPartToDotMap = [BodyPart: CGPoint]()
for (index, part) in BodyPart.allCases.enumerated() {
let position = CGPoint(
x: CGFloat(coords[index].x) * viewSize.width / CGFloat(Model.input.width),
y: CGFloat(coords[index].y) * viewSize.height / CGFloat(Model.input.height)
)
bodyPartToDotMap[part] = position
result.dots.append(position)
}
do {
try result.lines = BodyPart.lines.map { map throws -> Line in
guard let from = bodyPartToDotMap[map.from] else {
throw PostprocessError.missingBodyPart(of: map.from)
}
guard let to = bodyPartToDotMap[map.to] else {
throw PostprocessError.missingBodyPart(of: map.to)
}
return Line(from: from, to: to)
}
} catch PostprocessError.missingBodyPart(let missingPart) {
os_log("Postprocessing error: %s is missing.", type: .error, missingPart.rawValue)
return nil
} catch {
os_log("Postprocessing error: %s", type: .error, error.localizedDescription)
return nil
}
return result
}
*/
/// Run inference with given `Data`
///
/// Parameter `from`: `Data` of input image to run model.
private func inference(from data: Data) {
// Copy the initialized `Data` to the input `Tensor`.
do {
try interpreter.copy(data, toInputAt: 0)
// Run inference by invoking the `Interpreter`.
try interpreter.invoke()
// Get the output `Tensor` to process the inference results.
outputTensor = try interpreter.output(at: 0)
//heatsTensor = try interpreter.output(at: 0)
//offsetsTensor = try interpreter.output(at: 1)
} catch let error {
os_log(
"Failed to invoke the interpreter with error: %s", type: .error,
error.localizedDescription)
return
}
}
/// Returns value within [0,1].
private func sigmoid(_ x: Float32) -> Float32 {
return (1.0 / (1.0 + exp(-x)))
}
}
// MARK: - Data types for inference result
struct KeyPoint {
var bodyPart: BodyPart = BodyPart.NOSE
var position: CGPoint = CGPoint()
var score: Float = 0.0
}
struct Line {
let from: CGPoint
let to: CGPoint
}
struct Times {
var preprocessing: Double
var inference: Double
var postprocessing: Double
}
struct Result {
var dots: [CGPoint]
var lines: [Line]
var score: Float
}
enum BodyPart: String, CaseIterable {
case NOSE = "nose"
case LEFT_EYE = "left eye"
case RIGHT_EYE = "right eye"
case LEFT_EAR = "left ear"
case RIGHT_EAR = "right ear"
case LEFT_SHOULDER = "left shoulder"
case RIGHT_SHOULDER = "right shoulder"
case LEFT_ELBOW = "left elbow"
case RIGHT_ELBOW = "right elbow"
case LEFT_WRIST = "left wrist"
case RIGHT_WRIST = "right wrist"
case LEFT_HIP = "left hip"
case RIGHT_HIP = "right hip"
case LEFT_KNEE = "left knee"
case RIGHT_KNEE = "right knee"
case LEFT_ANKLE = "left ankle"
case RIGHT_ANKLE = "right ankle"
/// List of lines connecting each part.
static let lines = [
(from: BodyPart.LEFT_WRIST, to: BodyPart.LEFT_ELBOW),
(from: BodyPart.LEFT_ELBOW, to: BodyPart.LEFT_SHOULDER),
(from: BodyPart.LEFT_SHOULDER, to: BodyPart.RIGHT_SHOULDER),
(from: BodyPart.RIGHT_SHOULDER, to: BodyPart.RIGHT_ELBOW),
(from: BodyPart.RIGHT_ELBOW, to: BodyPart.RIGHT_WRIST),
(from: BodyPart.LEFT_SHOULDER, to: BodyPart.LEFT_HIP),
(from: BodyPart.LEFT_HIP, to: BodyPart.RIGHT_HIP),
(from: BodyPart.RIGHT_HIP, to: BodyPart.RIGHT_SHOULDER),
(from: BodyPart.LEFT_HIP, to: BodyPart.LEFT_KNEE),
(from: BodyPart.LEFT_KNEE, to: BodyPart.LEFT_ANKLE),
(from: BodyPart.RIGHT_HIP, to: BodyPart.RIGHT_KNEE),
(from: BodyPart.RIGHT_KNEE, to: BodyPart.RIGHT_ANKLE),
]
}
// MARK: - Delegates Enum
enum Delegates: Int, CaseIterable {
case CPU
case Metal
case CoreML
var description: String {
switch self {
case .CPU:
return "CPU"
case .Metal:
return "GPU"
case .CoreML:
return "NPU"
}
}
}
// MARK: - Custom Errors
enum PostprocessError: Error {
case missingBodyPart(of: BodyPart)
}
// MARK: - Information about the model file.
typealias FileInfo = (name: String, extension: String)
enum Model {
static let file: FileInfo = (
name: "model_opt", extension: "tflite"
)
static let input = (batchSize: 1, height: 256, width: 256, channelSize: 3)
static let output = (batchSize: 1, height: 256, width: 256, channelSize: 1)
static let isQuantized = false
}
extension Array {
/// Creates a new array from the bytes of the given unsafe data.
///
/// - Warning: The array's `Element` type must be trivial in that it can be copied bit for bit
/// with no indirection or reference-counting operations; otherwise, copying the raw bytes in
/// the `unsafeData`'s buffer to a new array returns an unsafe copy.
/// - Note: Returns `nil` if `unsafeData.count` is not a multiple of
/// `MemoryLayout<Element>.stride`.
/// - Parameter unsafeData: The data containing the bytes to turn into an array.
init?(unsafeData: Data) {
guard unsafeData.count % MemoryLayout<Element>.stride == 0 else { return nil }
#if swift(>=5.0)
self = unsafeData.withUnsafeBytes { .init($0.bindMemory(to: Element.self)) }
#else
self = unsafeData.withUnsafeBytes {
.init(UnsafeBufferPointer<Element>(
start: $0,
count: unsafeData.count / MemoryLayout<Element>.stride
))
}
#endif // swift(>=5.0)
}
}
|