Spaces:
				
			
			
	
			
			
		Sleeping
		
	
	
	
			
			
	
	
	
	
		
		
		Sleeping
		
	File size: 3,046 Bytes
			
			| 3b4f6eb | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 | import re
from tqdm import tqdm
# from llama_index.core import Document
from langchain_core.documents import Document
import json
def remove_boilerplate(document_text: str) -> str:
        
        # Remove the boilerplate text before the actual content
        start_content_match = re.search(r'\*\*\* START OF THE PROJECT GUTENBERG EBOOK [^*]+ \*\*\*', document_text)
        if start_content_match:
            document_text = document_text[start_content_match.end():].strip()
        
        end_content_match = re.search(r'\*\*\* END OF THE PROJECT GUTENBERG EBOOK [^*]+ \*\*\*', document_text)
        if end_content_match:
            document_text = document_text[:end_content_match.start()].strip()
        return document_text
def get_metadata_from_text(document_text:str) -> dict[str, str]:
        # Extract metadata using regular expressions
        title_match = re.search(r'Title\s*:\s*(.*)', document_text)
        author_match = re.search(r'Author\s*:\s*(.*)', document_text)
        release_date_match = re.search(r'Release date\s*:\s*(.*)', document_text)
        language_match = re.search(r'Language\s*:\s*(.*)', document_text)
        credits_match = re.search(r'Credits\s*:\s*(.*)', document_text)
        # Add metadata to the document
        metadata = {}
        if title_match:
            metadata['Title'] = title_match.group(1).strip()
        if author_match:
            metadata['Author'] = author_match.group(1).strip()
        if release_date_match:
            metadata['Release date'] = release_date_match.group(1).strip()
        if language_match:
            metadata['Language'] = language_match.group(1).strip()
        if credits_match:
            metadata['Credits'] = credits_match.group(1).strip()
        
        return metadata
def preprocess_documents(documents: list[Document]):
    for doc in tqdm(documents):
        doc.metadata.update(get_metadata_from_text(doc.page_content))
        doc.page_content = remove_boilerplate(doc.page_content)
    
    return documents
# Function to deserialize documents from JSON
def deserialize_documents(serialized_docs):
    documents = []
    for doc in json.loads(serialized_docs):
        documents.append(Document(page_content=doc["page_content"], metadata=doc["metadata"]))
    return documents
# Load the documents from a file
def load_documents_from_file(file_path) -> list[Document]:
    with open(file_path, 'r') as file:
        serialized_docs = file.read()
    return deserialize_documents(serialized_docs)
# Function to serialize documents to JSON
def serialize_documents(documents):
    serialized_docs = []
    for doc in documents:
        serialized_docs.append({
            "page_content": doc.page_content,
            "metadata": doc.metadata
        })
    return json.dumps(serialized_docs)
# Save the serialized documents to a file
def save_documents_to_file(documents, file_path):
    serialized_docs = serialize_documents(documents)
    with open(file_path, 'w') as file:
        file.write(serialized_docs) |