Spaces:
Sleeping
Sleeping
File size: 6,992 Bytes
b29fbac c202d62 b29fbac c202d62 b29fbac |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 |
"""Gradio demo app for Food-101 classification."""
import sys
from pathlib import Path
from typing import Tuple, Dict, List
import time
import tempfile
import gradio as gr
import numpy as np
from PIL import Image
# Add scripts directory to path
project_root = Path(__file__).parent.parent
sys.path.append(str(project_root / "scripts"))
from predict import Food101Predictor
from train import load_food101_splits
class GradioFood101App:
"""Gradio application for Food-101 classification."""
def __init__(self):
"""Initialize the Gradio app with the ONNX predictor."""
self.predictor = None
self.load_model()
def load_model(self):
"""Load the ONNX predictor."""
try:
# Paths
model_path = project_root / "models/efficientnet_b0_food101.onnx"
data_dir = project_root / "food-101/food-101"
# Load class names
_, _, _, idx_to_class = load_food101_splits(data_dir, val_split=0.1, seed=42)
class_names = [idx_to_class[i] for i in range(len(idx_to_class))]
# Initialize predictor
self.predictor = Food101Predictor(model_path, class_names)
print(f"[GRADIO] Model loaded successfully with {len(class_names)} classes")
except Exception as e:
print(f"[ERROR] Failed to load model: {e}")
raise
def predict_image(self, image: Image.Image, top_k: int = 5) -> Tuple[Dict, str]:
"""
Predict food class for uploaded image.
Args:
image: PIL Image
top_k: Number of top predictions
Returns:
(confidences_dict, info_text)
"""
if image is None:
return {}, "Please upload an image first!"
if self.predictor is None:
return {}, "Model not loaded. Please try again."
try:
# Save image temporarily
with tempfile.NamedTemporaryFile(delete=False, suffix='.jpg') as tmp_file:
image.save(tmp_file.name)
temp_path = Path(tmp_file.name)
# Run prediction
start_time = time.time()
predictions, probabilities, inference_time = self.predictor.predict(temp_path, top_k)
total_time = (time.time() - start_time) * 1000
# Clean up
temp_path.unlink(missing_ok=True)
# Format results for Gradio
confidences = {}
for pred, prob in zip(predictions, probabilities):
confidences[pred.replace('_', ' ').title()] = float(prob)
# Create info text
info_lines = [
f"π **Prediction Results**",
f"β‘ **Inference Time**: {inference_time:.2f}ms",
f"π **Total Time**: {total_time:.2f}ms",
f"π§ **Model**: EfficientNet-B0 (ONNX)",
f"π **Top Prediction**: {predictions[0].replace('_', ' ').title()} ({probabilities[0]*100:.1f}%)"
]
info_text = "\n".join(info_lines)
return confidences, info_text
except Exception as e:
temp_path.unlink(missing_ok=True)
return {}, f"β **Error**: {str(e)}"
def get_examples(self) -> List[List]:
"""Get example images for the demo."""
examples_dir = project_root / "food-101/food-101/images/examples"
examples = []
# Get all example images
if examples_dir.exists():
images = list(examples_dir.glob("*.jpg"))
for image_path in images:
# Format: [image_path, top_k_value]
examples.append([str(image_path), 5])
# If no examples found, return empty list (Gradio will handle gracefully)
return examples if examples else []
def create_interface(self) -> gr.Interface:
"""Create and return the Gradio interface."""
# Custom CSS for better styling
css = """
.main-header {
text-align: center;
background: linear-gradient(90deg, #ff6b6b, #4ecdc4);
-webkit-background-clip: text;
-webkit-text-fill-color: transparent;
font-size: 2.5em;
font-weight: bold;
margin-bottom: 20px;
}
.info-box {
background-color: #f0f8ff;
border-left: 5px solid #4ecdc4;
padding: 15px;
margin: 10px 0;
border-radius: 5px;
}
"""
# Interface description
description = """
## π Food-101 Image Classifier
Upload an image of food and get AI-powered predictions! This demo uses a fine-tuned **EfficientNet-B0** model
trained on the Food-101 dataset to classify 101 different types of food.
### π― **Model Performance**
- **Accuracy**: 84.49% on test set
- **Inference Speed**: ~7ms per image
- **Classes**: 101 different food types
### π **How to use**
1. Upload an image or try one of our examples
2. Adjust the number of top predictions (1-10)
3. Click Submit to get predictions with confidence scores!
"""
# Create the interface
interface = gr.Interface(
fn=self.predict_image,
inputs=[
gr.Image(
type="pil",
label="πΈ Upload Food Image",
height=300
),
gr.Slider(
minimum=1,
maximum=10,
value=5,
step=1,
label="π’ Number of Predictions"
)
],
outputs=[
gr.Label(
label="π Predictions & Confidence Scores",
num_top_classes=10
),
gr.Markdown(
label="π Prediction Details"
)
],
title="π Food-101 AI Classifier",
description=description,
examples=self.get_examples(),
css=css,
theme=gr.themes.Soft(),
flagging_mode="never"
)
return interface
def main():
"""Main function to launch the Gradio app."""
try:
# Initialize the app
print("[GRADIO] Initializing Food-101 Classifier App...")
app = GradioFood101App()
# Create interface
print("[GRADIO] Creating Gradio interface...")
interface = app.create_interface()
# Launch the app
print("[GRADIO] Launching app...")
interface.launch(
share=False, # Set to True to create public link
server_name="0.0.0.0",
server_port=7860,
show_error=True
)
except Exception as e:
print(f"[ERROR] Failed to launch Gradio app: {e}")
raise
if __name__ == "__main__":
main() |