File size: 23,137 Bytes
ce46d4a
 
 
 
f2cbbe4
 
 
ce46d4a
 
 
 
 
 
 
 
 
 
 
 
f2cbbe4
 
 
 
928d2e4
f2cbbe4
 
 
ce46d4a
f2cbbe4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
57fde37
f2cbbe4
57fde37
f2cbbe4
 
57fde37
f2cbbe4
 
 
c0241f3
f2cbbe4
 
 
 
 
 
 
 
 
4121474
f2cbbe4
 
 
 
 
 
57fde37
 
f2cbbe4
57fde37
 
 
 
 
 
 
f2cbbe4
4121474
f2cbbe4
 
57fde37
f2cbbe4
 
c0241f3
 
4121474
 
 
 
f2cbbe4
 
 
 
 
 
 
 
 
 
ce46d4a
 
f2cbbe4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ce46d4a
 
f2cbbe4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ce46d4a
 
f2cbbe4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ce46d4a
 
f2cbbe4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f2a13aa
f2cbbe4
 
 
 
 
 
 
 
 
 
 
 
 
 
ce46d4a
f2cbbe4
 
 
 
 
 
ce46d4a
f2cbbe4
ce46d4a
f2cbbe4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f2a13aa
f2cbbe4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0d3acf8
f2cbbe4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ce46d4a
 
f2cbbe4
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
import gradio as gr
import pandas as pd
import plotly.express as px
import plotly.graph_objects as go
from plotly.subplots import make_subplots
import numpy as np
from datetime import datetime

# Load data
guest_by_channel = pd.read_csv("data/table_guests_by_channel.csv").rename(columns=str.lower)
topic_summaries = pd.read_csv("data/table_topic_summaries.csv").rename(columns=str.lower)
videos_by_topic = pd.read_csv("data/videos_by_topic.csv").rename(columns=str.lower)
youtube_metadata = pd.read_csv("data/youtube_metadata.tsv", sep="\t").rename(columns=str.lower)
guest_timeline = pd.read_csv("data/guest_timeline.tsv", sep="\t").rename(columns=str.lower)

# Cleaning and preprocessing
guest_by_channel.columns = guest_by_channel.columns.str.replace(' ', '_')
topic_summaries.columns = topic_summaries.columns.str.replace(' ', '_')

# Convert date columns to datetime
youtube_metadata['video_publish_date'] = pd.to_datetime(youtube_metadata['video_publish_date'])
guest_timeline['video_publish_date'] = pd.to_datetime(guest_timeline['video_publish_date'])
videos_by_topic['video_publish_date'] = pd.to_datetime(videos_by_topic['video_publish_date'])

# Create derived metrics
guest_by_channel['avg_views_per_channel'] = guest_by_channel['views_sum'] / guest_by_channel['no_of_channels']
guest_by_channel = guest_by_channel.sort_values('views_sum', ascending=False)

# Create channel list for filtering
channel_opts = [col for col in guest_by_channel.columns if col in 
               ['adin_live', 'flagrant', 'full_send_podcast', 'impaulsive', 
                'lex_fridman', 'pbd_podcast', 'powerfuljre', 'shawn_ryan_show', 'theo_von']]

# Create topic list for filtering
topic_opts = [col for col in topic_summaries.columns if col.startswith('#')]

# Create category list for filtering
categories = sorted(guest_by_channel['category'].unique().tolist())

# ---- DASHBOARD COMPONENTS ----

def executive_summary():
    # Calculate key metrics
    total_guests = len(guest_by_channel)
    total_views = guest_by_channel['views_sum'].sum()
    avg_views_per_guest = total_views / total_guests
    female_guests = guest_by_channel[guest_by_channel['is_a_woman'] == True].shape[0]
    female_pct = (female_guests / total_guests) * 100
    
    # Top performing categories by views
    category_views = guest_by_channel.groupby('category')['views_sum'].sum().sort_values(ascending=False)
    
    # Top performing channels by guest appearances
    channel_appearances = {}
    for channel in channel_opts:
        channel_appearances[channel] = guest_by_channel[guest_by_channel[channel] == 1].shape[0]
    
    # Create summary visualizations
    fig = make_subplots(
        rows=2, cols=2,
        specs=[[{"type": "indicator"}, {"type": "indicator"}],
               [{"type": "xy"}, {"type": "bar"}]],
        subplot_titles=("Total Guest Views (M)", "Avg Views per Guest (M)", 
                        "Guest Count by Category", "Views by Category")
    )
    
    # Add indicator traces
    fig.add_trace(
        go.Indicator(
            mode="number",
            value=total_views / 1_000_000,
            number={"suffix": "M", "valueformat": ".1f"},
            title={"text": "Total Views"}
        ),
        row=1, col=1
    )
    
    fig.add_trace(
        go.Indicator(
            mode="number",
            value=avg_views_per_guest / 1_000_000,
            number={"suffix": "M", "valueformat": ".1f"},
            title={"text": "Avg Views per Guest"}
        ),
        row=1, col=2
    )
    
    # Add bar chart for guest counts per category
    guest_counts = guest_by_channel['category'].value_counts().loc[category_views.index]
    fig.add_trace(
        go.Bar(
            x=guest_counts.index,
            y=guest_counts.values,
            marker_color='teal',
            text=guest_counts.values,
            textposition='auto',
            name='Guest Count by Category'
        ),
        row=2, col=1
    )
    
    # Add bar chart for total views per category
    fig.add_trace(
        go.Bar(
            x=category_views.index,
            y=category_views.values,
            marker_color='indianred',
            text=category_views.values,
            textposition='auto',
            name='Views by Category'
        ),
        row=2, col=2
    )
    
    fig.update_layout(
        height=600,
        title_text="Executive Dashboard - Key Performance Metrics",
        showlegend=False
    )
    
    return fig

# 2. Guest Performance Analysis
def guest_performance_analysis(top_n=20, category_filter=None, gender_filter=None):
    # Filter data based on inputs
    filtered_data = guest_by_channel.copy()
    
    if category_filter and category_filter != "All Categories":
        filtered_data = filtered_data[filtered_data['category'] == category_filter]
    
    if gender_filter == "Female":
        filtered_data = filtered_data[filtered_data['is_a_woman'] == True]
    elif gender_filter == "Male":
        filtered_data = filtered_data[filtered_data['is_a_woman'] == False]
    
    # Get top N guests
    top_guests = filtered_data.head(top_n)
    
    # Create visualization
    fig = px.bar(
        top_guests, 
        x='guest', 
        y='views_sum',
        color='category',
        hover_data=['no_of_channels', 'avg_views_per_channel'],
        labels={
            'guest': 'Guest Name',
            'views_sum': 'Total Views',
            'category': 'Guest Category',
            'no_of_channels': 'Number of Channels',
            'avg_views_per_channel': 'Avg Views per Channel'
        },
        title=f'Top {top_n} Guests by Total Views',
        height=600
    )
    
    fig.update_layout(
        xaxis_title="Guest",
        yaxis_title="Total Views",
        xaxis={'categoryorder':'total descending'},
        yaxis=dict(tickformat=".2s")
    )
    
    # Rotate x-axis labels for better readability
    fig.update_xaxes(tickangle=45)
    
    return fig

# 3. Channel Comparison
def channel_comparison(selected_channels, metric="guest_count"):
    if not selected_channels:
        selected_channels = channel_opts[:3]  # Default to first 3 channels
    
    # Prepare data based on selected metric
    if metric == "guest_count":
        # Count guests per channel
        channel_data = {channel: guest_by_channel[guest_by_channel[channel] == 1].shape[0] for channel in selected_channels}
        title = "Number of Guests per Channel"
        y_label = "Guest Count"
    
    elif metric == "total_views":
        # Sum views per channel
        channel_data = {channel: guest_by_channel[guest_by_channel[channel] == 1]['views_sum'].sum() for channel in selected_channels}
        title = "Total Views per Channel"
        y_label = "Total Views"
    
    elif metric == "avg_views":
        # Average views per guest per channel
        channel_data = {channel: guest_by_channel[guest_by_channel[channel] == 1]['views_sum'].mean() for channel in selected_channels}
        title = "Average Views per Guest per Channel"
        y_label = "Average Views"
    
    elif metric == "category_diversity":
        # Category diversity per channel (number of unique categories)
        channel_data = {channel: len(guest_by_channel[guest_by_channel[channel] == 1]['category'].unique()) for channel in selected_channels}
        title = "Category Diversity per Channel"
        y_label = "Number of Unique Categories"
    
    # Create visualization
    fig = px.bar(
        x=list(channel_data.keys()),
        y=list(channel_data.values()),
        labels={'x': 'Channel', 'y': y_label},
        title=title,
        height=500
    )
    
    # Format y-axis for views
    if metric in ["total_views", "avg_views"]:
        fig.update_layout(yaxis=dict(tickformat=".2s"))
    
    return fig

# 4. Topic Trend Analysis
def topic_trend_analysis(selected_topics, time_period="all"):
    if not selected_topics:
        selected_topics = topic_opts[:3]  # Default to first 3 topics
    
    # Filter data based on time period
    filtered_data = videos_by_topic.copy()
    
    if time_period == "last_year":
        one_year_ago = pd.Timestamp.now() - pd.DateOffset(years=1)
        filtered_data = filtered_data[filtered_data['video_publish_date'] >= one_year_ago]
    elif time_period == "last_6_months":
        six_months_ago = pd.Timestamp.now() - pd.DateOffset(months=6)
        filtered_data = filtered_data[filtered_data['video_publish_date'] >= six_months_ago]
    
    # Group by month and calculate topic frequency
    filtered_data['month'] = filtered_data['video_publish_date'].dt.to_period('M')
    
    # Create dataframe for visualization
    topic_trends = []
    
    for topic in selected_topics:
        if topic in filtered_data.columns:
            monthly_data = filtered_data.groupby('month')[topic].mean().reset_index()
            monthly_data['topic'] = topic
            monthly_data['month'] = monthly_data['month'].dt.to_timestamp()
            topic_trends.append(monthly_data)
    
    if not topic_trends:
        return go.Figure().update_layout(title="No data available for selected topics")
    
    trend_df = pd.concat(topic_trends)
    
    # Create visualization
    fig = px.line(
        trend_df,
        x='month',
        y=topic,
        color='topic',
        labels={
            'month': 'Month',
            topic: 'Topic Frequency',
            'topic': 'Topic'
        },
        title='Topic Trends Over Time',
        height=500
    )
    
    return fig

# 5. Guest Category ROI Analysis
def guest_category_roi(metric="views_per_appearance"):
    # Calculate metrics by category
    category_metrics = guest_by_channel.groupby('category').agg(
        total_views=('views_sum', 'sum'),
        guest_count=('guest', 'count'),
        total_appearances=('no_of_channels', 'sum')
    ).reset_index()
    
    # Calculate derived metrics
    category_metrics['views_per_guest'] = category_metrics['total_views'] / category_metrics['guest_count']
    category_metrics['views_per_appearance'] = category_metrics['total_views'] / category_metrics['total_appearances']
    
    # Select metric for visualization
    if metric == "views_per_guest":
        y_value = 'views_per_guest'
        title = 'Views per Guest by Category'
        y_label = 'Views per Guest'
    else:  # views_per_appearance
        y_value = 'views_per_appearance'
        title = 'Views per Appearance by Category'
        y_label = 'Views per Appearance'
    
    # Create visualization
    fig = px.bar(
        category_metrics.sort_values(y_value, ascending=False),
        x='category',
        y=y_value,
        color='guest_count',
        text='guest_count',
        labels={
            'category': 'Guest Category',
            y_value: y_label,
            'guest_count': 'Number of Guests'
        },
        title=title,
        height=500
    )
    
    fig.update_layout(yaxis=dict(tickformat=".2s"))
    
    return fig

# 6. Content Strategy Recommendations
def content_strategy_recommendations(selected_topics=None):
    if not selected_topics:
        selected_topics = topic_opts[:5]  # Default to first 5 topics
    
    # Calculate engagement metrics for videos by topic
    topic_engagement = {}
    
    for topic in selected_topics:
        if topic in videos_by_topic.columns:
            # Filter videos that cover this topic
            topic_videos = videos_by_topic[videos_by_topic[topic] > 0]
            
            if not topic_videos.empty:
                # Calculate metrics
                avg_views = topic_videos['video_view_count'].mean()
                avg_likes = topic_videos['video_like_count'].mean()
                avg_comments = topic_videos['video_comment_count'].mean()
                
                # Calculate engagement rate (likes + comments) / views
                engagement_rate = (avg_likes + avg_comments) / avg_views if avg_views > 0 else 0
                
                topic_engagement[topic] = {
                    'avg_views': avg_views,
                    'avg_likes': avg_likes,
                    'avg_comments': avg_comments,
                    'engagement_rate': engagement_rate
                }
    
    # Create dataframe for visualization
    engagement_df = pd.DataFrame.from_dict(topic_engagement, orient='index').reset_index()
    engagement_df.rename(columns={'index': 'topic'}, inplace=True)
    
    if engagement_df.empty:
        return go.Figure().update_layout(title="No data available for selected topics")
    
    # Create visualization
    fig = make_subplots(
        rows=1, cols=2,
        specs=[[{"type": "bar"}, {"type": "scatter"}]],
        subplot_titles=("Average Views by Topic", "Engagement Analysis")
    )
    
    # Add average views bar chart
    fig.add_trace(
        go.Bar(
            x=engagement_df['topic'],
            y=engagement_df['avg_views'],
            name='Avg Views'
        ),
        row=1, col=1
    )
    
    # Add engagement scatter plot
    fig.add_trace(
        go.Scatter(
            x=engagement_df['avg_views'],
            y=engagement_df['engagement_rate'],
            mode='markers+text',
            text=engagement_df['topic'],
            textposition="top center",
            marker=dict(
                size=engagement_df['avg_comments'] / 100,  # Size based on comment count
                sizemin=10,
                sizemode='area'
            ),
            name='Engagement Rate'
        ),
        row=1, col=2
    )
    
    fig.update_layout(
        height=500,
        title_text="Content Strategy Analysis by Topic",
        showlegend=False
    )
    
    fig.update_yaxes(title_text="Average Views", row=1, col=1)
    fig.update_yaxes(title_text="Engagement Rate (Likes+Comments)/Views", row=1, col=2)
    fig.update_xaxes(title_text="Topic", row=1, col=1)
    fig.update_xaxes(title_text="Average Views", row=1, col=2)
    
    return fig

# 7. Guest Timeline Analysis
def guest_timeline_analysis(selected_guest, view_type="views"):
    if not selected_guest:
        # Default to highest viewed guest
        selected_guest = guest_by_channel.iloc[0]['guest']
    
    # Filter data for selected guest
    guest_data = guest_timeline[guest_timeline['guest'] == selected_guest].copy()
    
    if guest_data.empty:
        return go.Figure().update_layout(title=f"No timeline data available for {selected_guest}")
    
    # Sort by date
    guest_data = guest_data.sort_values('video_publish_date')
    
    # Create visualization based on view type
    if view_type == "views":
        fig = px.line(
            guest_data,
            x='video_publish_date',
            y='video_view_count',
            color='channel_title',
            markers=True,
            labels={
                'video_publish_date': 'Date',
                'video_view_count': 'Views',
                'channel_title': 'Channel'
            },
            title=f'View Count Timeline for {selected_guest}',
            height=500
        )
        
        # Add average line
        avg_views = guest_data['video_view_count'].mean()
        fig.add_hline(y=avg_views, line_dash="dash", line_color="gray", 
                     annotation_text=f"Avg: {avg_views:.0f} views")
        
    else:  # cumulative
        guest_data = guest_data.sort_values('video_publish_date')
        guest_data['cumulative_views'] = guest_data['video_view_count'].cumsum()
        
        fig = px.line(
            guest_data,
            x='video_publish_date',
            y='cumulative_views',
            markers=True,
            labels={
                'video_publish_date': 'Date',
                'cumulative_views': 'Cumulative Views'
            },
            title=f'Cumulative Views for {selected_guest}',
            height=500
        )
    
    return fig

# 8. Channel Growth Analysis
def channel_growth_analysis(selected_channels):
    if not selected_channels:
        selected_channels = channel_opts[:3]  # Default to first 3 channels
    
    # Filter metadata for selected channels
    channel_data = youtube_metadata[youtube_metadata['channel_title'].str.lower().isin([ch.replace('_', ' ') for ch in selected_channels])]
    
    if channel_data.empty:
        return go.Figure().update_layout(title="No data available for selected channels")
    
    # Group by channel and month
    channel_data['month'] = channel_data['video_publish_date'].dt.to_period('M')
    monthly_stats = channel_data.groupby(['channel_title', 'month']).agg(
        avg_views=('video_view_count', 'mean'),
        video_count=('video_id', 'count')
    ).reset_index()
    
    monthly_stats['month'] = monthly_stats['month'].dt.to_timestamp()
    
    # Create visualization
    fig = make_subplots(
        rows=1, cols=2,
        specs=[[{"type": "scatter"}, {"type": "bar"}]],
        subplot_titles=("Average Views per Video Over Time", "Monthly Video Production")
    )
    
    # Add average views line chart
    for channel in monthly_stats['channel_title'].unique():
        channel_monthly = monthly_stats[monthly_stats['channel_title'] == channel]
        
        fig.add_trace(
            go.Scatter(
                x=channel_monthly['month'],
                y=channel_monthly['avg_views'],
                mode='lines+markers',
                name=channel
            ),
            row=1, col=1
        )
        
        fig.add_trace(
            go.Bar(
                x=channel_monthly['month'],
                y=channel_monthly['video_count'],
                name=channel
            ),
            row=1, col=2
        )
    
    fig.update_layout(
        height=500,
        title_text="Channel Growth Analysis",
        legend=dict(orientation="h", yanchor="bottom", y=1.02, xanchor="right", x=1)
    )
    
    fig.update_yaxes(title_text="Average Views per Video", row=1, col=1)
    fig.update_yaxes(title_text="Number of Videos", row=1, col=2)
    fig.update_xaxes(title_text="Month", row=1, col=1)
    fig.update_xaxes(title_text="Month", row=1, col=2)
    
    return fig

# ---- GRADIO INTERFACE ----

with gr.Blocks(theme=gr.themes.Soft()) as demo:
    gr.Markdown("# 📊 YouTube Content Strategy & Analytics Dashboard")
    gr.Markdown("### Business Intelligence for Content Strategy and Guest Selection")
    
    with gr.Tab("Executive Summary"):
        gr.Markdown("### Key Performance Indicators and Business Overview")
        exec_summary_plot = gr.Plot()
        gr.Button("Generate Executive Summary").click(fn=executive_summary, outputs=exec_summary_plot)
    
    with gr.Tab("Guest Performance"):
        gr.Markdown("### Guest Performance Analysis")
        with gr.Row():
            with gr.Column(scale=1):
                top_n = gr.Slider(minimum=5, maximum=50, value=20, step=5, label="Number of Guests")
                category_filter = gr.Dropdown(choices=["All Categories"] + categories, value="All Categories", label="Filter by Category")
                gender_filter = gr.Dropdown(choices=["All", "Male", "Female"], value="All", label="Filter by Gender")
                guest_perf_btn = gr.Button("Analyze Guest Performance")
            
            with gr.Column(scale=3):
                guest_perf_plot = gr.Plot()
        
        guest_perf_btn.click(
            fn=guest_performance_analysis,
            inputs=[top_n, category_filter, gender_filter],
            outputs=guest_perf_plot
        )
    
    with gr.Tab("Channel Analysis"):
        gr.Markdown("### Channel Comparison and Performance")
        with gr.Row():
            with gr.Column(scale=1):
                channel_select = gr.CheckboxGroup(choices=channel_opts, value=channel_opts[:3], label="Select Channels")
                metric_select = gr.Radio(
                    choices=["guest_count", "total_views", "avg_views", "category_diversity"],
                    value="total_views",
                    label="Comparison Metric"
                )
                channel_btn = gr.Button("Compare Channels")
            
            with gr.Column(scale=3):
                channel_plot = gr.Plot()
        
        channel_btn.click(
            fn=channel_comparison,
            inputs=[channel_select, metric_select],
            outputs=channel_plot
        )
    
    with gr.Tab("Topic Trends"):
        gr.Markdown("### Topic Trend Analysis")
        with gr.Row():
            with gr.Column(scale=1):
                topic_select = gr.CheckboxGroup(choices=topic_opts, value=topic_opts[:3], label="Select Topics")
                time_period = gr.Radio(
                    choices=["all", "last_year", "last_6_months"],
                    value="all",
                    label="Time Period"
                )
                topic_btn = gr.Button("Analyze Topic Trends")
            
            with gr.Column(scale=3):
                topic_plot = gr.Plot()
        
        topic_btn.click(
            fn=topic_trend_analysis,
            inputs=[topic_select, time_period],
            outputs=topic_plot
        )
    
    with gr.Tab("ROI Analysis"):
        gr.Markdown("### Return on Investment by Guest Category")
        with gr.Row():
            with gr.Column(scale=1):
                roi_metric = gr.Radio(
                    choices=["views_per_appearance", "views_per_guest"],
                    value="views_per_appearance",
                    label="ROI Metric"
                )
                roi_btn = gr.Button("Calculate ROI")
            
            with gr.Column(scale=3):
                roi_plot = gr.Plot()
        
        roi_btn.click(
            fn=guest_category_roi,
            inputs=[roi_metric],
            outputs=roi_plot
        )
    
    
    with gr.Tab("Guest Timeline"):
        gr.Markdown("### Guest Performance Timeline")
        with gr.Row():
            with gr.Column(scale=1):
                guest_select = gr.Dropdown(choices=sorted(guest_by_channel['guest'].unique().tolist(), reverse=True), label="Select Guest")
                timeline_type = gr.Radio(
                    choices=["views", "cumulative"],
                    value="views",
                    label="Timeline View"
                )
                timeline_btn = gr.Button("Analyze Timeline")
            
            with gr.Column(scale=3):
                timeline_plot = gr.Plot()
        
        timeline_btn.click(
            fn=guest_timeline_analysis,
            inputs=[guest_select, timeline_type],
            outputs=timeline_plot
        )
    
    with gr.Tab("Channel Growth"):
        gr.Markdown("### Channel Growth Analysis")
        with gr.Row():
            with gr.Column(scale=1):
                growth_channels = gr.CheckboxGroup(choices=channel_opts, value=channel_opts[:3], label="Select Channels")
                growth_btn = gr.Button("Analyze Growth")
            
            with gr.Column(scale=3):
                growth_plot = gr.Plot()
        
        growth_btn.click(
            fn=channel_growth_analysis,
            inputs=[growth_channels],
            outputs=growth_plot
        )

if __name__ == "__main__":
    demo.launch()