File size: 37,488 Bytes
1885ec3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
"""
H1B Data Analytics Pipeline

This module provides a comprehensive ETL pipeline for processing H1B visa application data.
It loads CSV files into DuckDB, creates dimensional models, and performs data quality checks.
"""

import os
import gc
import logging
import hashlib
from datetime import datetime
from typing import List, Optional, Tuple
import traceback

import duckdb
import pandas as pd
import numpy as np
import psutil


class H1BDataPipeline:
    """
    Main pipeline class for processing H1B visa application data.
    
    This class handles the complete ETL process including:
    - Loading CSV files into DuckDB
    - Creating dimensional models
    - Data quality checks
    - Database persistence
    """
    
    def __init__(self, db_path: str = ':memory:', log_level: int = logging.INFO):
        """
        Initialize the H1B data pipeline.
        
        Args:
            db_path: Path to DuckDB database file. Use ':memory:' for in-memory database.
            log_level: Logging level for the pipeline.
        """
        self.db_path = db_path
        self.conn = None
        self.logger = self._setup_logging(log_level)
        self._setup_database()
        
    def _setup_logging(self, log_level: int) -> logging.Logger:
        """Set up logging configuration for the pipeline."""
        logger = logging.getLogger(__name__)
        logging.basicConfig(
            level=log_level,
            format="{asctime} - {name} - {levelname} - {message}",
            style="{",
            datefmt="%Y-%m-%d %H:%M:%S",
        )
        return logger
        
    def _setup_database(self) -> None:
        """Initialize DuckDB connection."""
        try:
            self.conn = duckdb.connect(self.db_path)
            self.logger.info(f"DuckDB connection established to {self.db_path}")
            self.logger.info(f"DuckDB version: {duckdb.__version__}")
            
            # Test connection
            test_result = self.conn.execute("SELECT 'Hello DuckDB!' as message").fetchone()
            self.logger.info(f"Connection test: {test_result[0]}")
            
        except Exception as e:
            self.logger.error(f"Failed to establish database connection: {e}")
            raise
            
    def __enter__(self):
        """Context manager entry."""
        return self
    
    def close(self) -> None:
        """Close database connection and cleanup resources."""
        if self.conn:
            self.conn.close()
            self.logger.info("Database connection closed")        
    
    def __exit__(self, exc_type, exc_val, exc_tb):
        """Context manager exit with cleanup."""
        self.close()


class MemoryManager:
    """Utility class for monitoring and managing memory usage."""
    
    @staticmethod
    def check_memory_usage() -> float:
        """
        Check current memory usage of the process.
        
        Returns:
            Memory usage in MB.
        """
        process = psutil.Process(os.getpid())
        memory_mb = process.memory_info().rss / 1024 / 1024
        print(f"Current memory usage: {memory_mb:.1f} MB")
        return memory_mb
    
    @staticmethod
    def clear_memory() -> None:
        """Force garbage collection to clear memory."""
        gc.collect()
        print("Memory cleared")


class FileValidator:
    """Utility class for validating file existence and accessibility."""
    
    @staticmethod
    def validate_files(file_paths: List[str]) -> Tuple[List[str], List[str]]:
        """
        Validate that files exist and are accessible.
        
        Args:
            file_paths: List of file paths to validate.
            
        Returns:
            Tuple of (existing_files, missing_files).
        """
        existing_files = []
        missing_files = []
        
        for file_path in file_paths:
            if os.path.exists(file_path):
                existing_files.append(file_path)
                print(f"✓ Found: {file_path}")
            else:
                missing_files.append(file_path)
                print(f"✗ Missing: {file_path}")
                
        return existing_files, missing_files


class DataLoader:
    """Handles loading data from various sources into DuckDB."""
    
    def __init__(self, conn: duckdb.DuckDBPyConnection, logger: logging.Logger):
        """
        Initialize data loader.
        
        Args:
            conn: DuckDB connection object.
            logger: Logger instance for tracking operations.
        """
        self.conn = conn
        self.logger = logger
    
    def load_csv_files(self, file_paths: List[str]) -> None:
        """
        Load CSV files directly into DuckDB without loading into pandas first.
        
        Args:
            file_paths: List of CSV file paths to load.
        """
        self.logger.info("Loading CSV files directly into DuckDB...")
        
        for file_path in file_paths:
            try:
                self._load_single_csv(file_path)
            except Exception as e:
                self.logger.error(f"Error loading {file_path}: {e}")
                
    def _load_single_csv(self, file_path: str) -> None:
        """
        Load a single CSV file into DuckDB.
        
        Args:
            file_path: Path to the CSV file.
        """
        self.logger.info(f"Loading {file_path}")
        
        # Extract metadata from filename
        filename = file_path.split('/')[-1].replace('.csv', '')
        table_name = f"raw_{filename}"
        fiscal_year = self._extract_fiscal_year(filename)
        
        # Load CSV directly into DuckDB
        self.conn.execute(f"""
            CREATE TABLE {table_name} AS 
            SELECT *,
                '{file_path}' as source_file,
                '{fiscal_year}' as fiscal_year
            FROM read_csv_auto('{file_path}', header=true, normalize_names=true, ignore_errors=true)
        """)
        
        # Clean column names
        self._clean_column_names(table_name)
        
        # Log success
        count = self.conn.execute(f"SELECT COUNT(*) FROM {table_name}").fetchone()[0]
        self.logger.info(f"Loaded {count:,} records from {file_path} into {table_name}")
    
    def _extract_fiscal_year(self, filename: str) -> str:
        """Extract fiscal year from filename."""
        import re
        match = re.search(r'FY(\d{4})', filename)
        if match:
            return match.group(1)  # Return only the year digits
        return "unknown"
    
    def _clean_column_names(self, table_name: str) -> None:
        """
        Clean column names in DuckDB table.
        
        Args:
            table_name: Name of the table to clean.
        """
        columns_query = f"PRAGMA table_info('{table_name}')"
        columns_info = self.conn.execute(columns_query).fetchall()
        
        for col_info in columns_info:
            old_name = col_info[1]
            new_name = self._normalize_column_name(old_name)
            
            if old_name != new_name:
                self.conn.execute(f"""
                    ALTER TABLE {table_name} 
                    RENAME COLUMN "{old_name}" TO {new_name}
                """)
    
    @staticmethod
    def _normalize_column_name(column_name: str) -> str:
        """
        Normalize column name to follow consistent naming convention.
        
        Args:
            column_name: Original column name.
            
        Returns:
            Normalized column name.
        """
        import re
        
        # Remove URLs and other problematic patterns
        normalized = re.sub(r'https?://[^\s]+', '', str(column_name))
        normalized = re.sub(r'[^\w\s]', '_', normalized)  # Replace special chars with underscore
        normalized = re.sub(r'\s+', '_', normalized)      # Replace spaces with underscore
        normalized = re.sub(r'_+', '_', normalized)       # Replace multiple underscores with single
        normalized = normalized.lower().strip('_')        # Lowercase and trim underscores
        
        # Ensure it starts with letter or underscore
        if normalized and not (normalized[0].isalpha() or normalized[0] == '_'):
            normalized = f'col_{normalized}'
        
        return normalized if normalized else 'unnamed_column'


class DataTransformer:
    """Handles data transformation and dimensional modeling."""
    
    def __init__(self, conn: duckdb.DuckDBPyConnection, logger: logging.Logger):
        """
        Initialize data transformer.
        
        Args:
            conn: DuckDB connection object.
            logger: Logger instance for tracking operations.
        """
        self.conn = conn
        self.logger = logger
    
    def create_combined_table(self) -> None:
        """Create a combined table from all raw tables in DuckDB."""
        self.logger.info("Creating combined table in DuckDB...")
        
        # Get list of raw tables
        raw_tables = self.conn.execute("""
            SELECT table_name 
            FROM information_schema.tables 
            WHERE table_name LIKE 'raw_%'
        """).fetchall()
        
        if not raw_tables:
            raise ValueError("No raw tables found")
        
        # Create union query
        union_parts = [f"SELECT * FROM {table_info[0]}" for table_info in raw_tables]
        union_query = " UNION ALL ".join(union_parts)
        
        # Create combined table
        self.conn.execute(f"""
            CREATE TABLE combined_data AS
            {union_query}
        """)
        
        count = self.conn.execute("SELECT COUNT(*) FROM combined_data").fetchone()[0]
        self.logger.info(f"Created combined table with {count:,} records")
    
    def remove_columns_with_missing_data(self, table_name: str, threshold: float = 0.8) -> List[str]:
        """
        Remove columns with high missing data directly in DuckDB.
        
        Args:
            table_name: Name of the table to clean.
            threshold: Threshold for missing data ratio (0.0 to 1.0).
            
        Returns:
            List of columns that were kept.
        """
        self.logger.info(f"Removing columns with >{threshold*100}% missing data from {table_name}...")
        
        total_rows = self.conn.execute(f"SELECT COUNT(*) FROM {table_name}").fetchone()[0]
        columns_info = self.conn.execute(f"PRAGMA table_info('{table_name}')").fetchall()
        
        columns_to_keep = []
        columns_removed = []
        
        for col_info in columns_info:
            col_name = col_info[1]
            col_type = col_info[2]  # Get column type for better handling
            
            try:
                # Handle different column types appropriately
                if col_type.upper() in ['INTEGER', 'BIGINT', 'DOUBLE', 'FLOAT', 'DECIMAL', 'NUMERIC']:
                    # For numeric columns, only check for NULL
                    non_null_count = self.conn.execute(f"""
                        SELECT COUNT(*) 
                        FROM {table_name} 
                        WHERE "{col_name}" IS NOT NULL
                    """).fetchone()[0]
                else:
                    # For text columns, check for NULL and empty strings
                    non_null_count = self.conn.execute(f"""
                        SELECT COUNT(*) 
                        FROM {table_name} 
                        WHERE "{col_name}" IS NOT NULL 
                        AND TRIM(CAST("{col_name}" AS VARCHAR)) != ''
                    """).fetchone()[0]
                
                missing_ratio = 1 - (non_null_count / total_rows)
                
                self.logger.debug(f"Column {col_name}: {non_null_count}/{total_rows} non-null ({missing_ratio:.2%} missing)")
                
                if missing_ratio <= threshold:
                    columns_to_keep.append(col_name)
                else:
                    columns_removed.append(col_name)
                    self.logger.info(f"Removing column {col_name} with {missing_ratio:.2%} missing data")
                    
            except Exception as e:
                self.logger.warning(f"Error processing column {col_name}: {e}")
                # When in doubt, keep the column
                columns_to_keep.append(col_name)
        
        if columns_removed:
            self.logger.info(f"Removing {len(columns_removed)} columns with high missing data")
            self._recreate_table_with_columns(table_name, columns_to_keep)
        
        return columns_to_keep
    
    def _recreate_table_with_columns(self, table_name: str, columns_to_keep: List[str]) -> None:
        """
        Recreate table with only specified columns.
        
        Args:
            table_name: Original table name.
            columns_to_keep: List of column names to retain.
        """
        columns_str = ', '.join(columns_to_keep)
        self.conn.execute(f"""
            CREATE TABLE {table_name}_clean AS
            SELECT {columns_str}
            FROM {table_name}
        """)
        
        self.conn.execute(f"DROP TABLE {table_name}")
        self.conn.execute(f"ALTER TABLE {table_name}_clean RENAME TO {table_name}")


class DimensionalModeler:
    """Creates dimensional model tables for analytics."""
    
    def __init__(self, conn: duckdb.DuckDBPyConnection, logger: logging.Logger):
        """
        Initialize dimensional modeler.
        
        Args:
            conn: DuckDB connection object.
            logger: Logger instance for tracking operations.
        """
        self.conn = conn
        self.logger = logger
    
    def create_all_dimensions(self) -> None:
        """Create all dimension tables."""
        self._prepare_cleaned_data()
        self._create_beneficiary_dimension()
        self._create_employer_dimension()
        self._create_job_dimension()
        self._create_agent_dimension()
        self._create_status_dimension()
        self._create_date_dimension()
        
    def _prepare_cleaned_data(self) -> None:
        """Prepare cleaned data table for dimension creation."""
        self.logger.info("Preparing cleaned data...")
        # First, check what columns actually exist in combined_data
        columns_info = self.conn.execute("PRAGMA table_info('combined_data')").fetchall()
        available_columns = [col[1] for col in columns_info]
        self.logger.info(f"Available columns in combined_data: {available_columns}")
        self.conn.execute("""
            CREATE TABLE cleaned_data AS
            SELECT
                ROW_NUMBER() OVER () as original_row_id,
                * 
            FROM combined_data
        """)
    
    def _create_beneficiary_dimension(self) -> None:
        """Create beneficiary dimension table."""
        self.logger.info("Creating dim_beneficiary...")
        self.conn.execute("""
            CREATE TABLE dim_beneficiary AS
            SELECT DISTINCT
                ROW_NUMBER() OVER () as beneficiary_key,
                MD5(CONCAT(
                    COALESCE(country_of_birth, ''), '|',
                    COALESCE(country_of_nationality, ''), '|',
                    COALESCE(CAST(ben_year_of_birth AS VARCHAR), ''), '|',
                    COALESCE(gender, '')
                )) as beneficiary_id,
                country_of_birth,
                country_of_nationality,
                ben_year_of_birth,
                gender,
                ben_sex,
                ben_country_of_birth,
                ben_current_class,
                ben_education_code,
                ed_level_definition,
                ben_pfield_of_study
            FROM cleaned_data
            WHERE country_of_birth IS NOT NULL 
               OR country_of_nationality IS NOT NULL 
               OR ben_year_of_birth IS NOT NULL 
               OR gender IS NOT NULL
        """)
    
    def _create_employer_dimension(self) -> None:
        """Create employer dimension table."""
        self.logger.info("Creating dim_employer...")
        self.conn.execute("""
            CREATE TABLE dim_employer AS
            SELECT DISTINCT
                ROW_NUMBER() OVER () as employer_key,
                MD5(CONCAT(
                    COALESCE(employer_name, ''), '|',
                    COALESCE(fein, '')
                )) as employer_id,
                employer_name,
                fein,
                mail_addr,
                city,
                state,
                zip
            FROM cleaned_data
            WHERE employer_name IS NOT NULL OR fein IS NOT NULL
        """)
    
    def _create_job_dimension(self) -> None:
        """Create job dimension table."""
        self.logger.info("Creating dim_job...")
        self.conn.execute("""
            CREATE TABLE dim_job AS
            SELECT DISTINCT
                ROW_NUMBER() OVER () as job_key,
                MD5(CONCAT(
                    COALESCE(job_title, ''), '|',
                    COALESCE(naics_code, '')
                )) as job_id,
                job_title,
                dot_code,
                naics_code,
                wage_amt,
                wage_unit,
                full_time_ind,
                ben_comp_paid,
                worksite_city,
                worksite_state
            FROM cleaned_data
            WHERE job_title IS NOT NULL OR naics_code IS NOT NULL
        """)
    
    def _create_agent_dimension(self) -> None:
        """Create agent dimension table."""
        self.logger.info("Creating dim_agent...")
        self.conn.execute("""
            CREATE TABLE dim_agent AS
            SELECT DISTINCT
                ROW_NUMBER() OVER () as agent_key,
                MD5(CONCAT(
                    COALESCE(agent_first_name, ''), '|',
                    COALESCE(agent_last_name, '')
                )) as agent_id,
                agent_first_name,
                agent_last_name
            FROM cleaned_data
            WHERE agent_first_name IS NOT NULL OR agent_last_name IS NOT NULL
        """)
    
    def _create_status_dimension(self) -> None:
        """Create status dimension table."""
        self.logger.info("Creating dim_status...")
        self.conn.execute("""
            CREATE TABLE dim_status AS
            SELECT DISTINCT
                ROW_NUMBER() OVER () as status_key,
                status_type,
                first_decision
            FROM cleaned_data
            WHERE status_type IS NOT NULL OR first_decision IS NOT NULL
        """)
    
    def _create_date_dimension(self) -> None:
        """Create date dimension table."""
        self.logger.info("Creating dim_date...")
        self.conn.execute("""
            CREATE TABLE dim_date AS
            WITH all_dates AS (
                -- Handle MM/DD/YYYY format
                SELECT TRY_STRPTIME(rec_date, '%m/%d/%Y') as date_value 
                FROM cleaned_data 
                WHERE rec_date IS NOT NULL 
                AND rec_date NOT LIKE '%(%'
                AND LENGTH(rec_date) >= 8
                AND rec_date ~ '^[0-9/-]+$'
                AND TRY_STRPTIME(rec_date, '%m/%d/%Y') IS NOT NULL
                
                UNION
                
                -- Handle YYYY-MM-DD format
                SELECT TRY_STRPTIME(rec_date, '%Y-%m-%d') as date_value 
                FROM cleaned_data 
                WHERE rec_date IS NOT NULL 
                AND rec_date NOT LIKE '%(%'
                AND LENGTH(rec_date) >= 8
                AND rec_date ~ '^[0-9-]+$'
                AND TRY_STRPTIME(rec_date, '%Y-%m-%d') IS NOT NULL
                
                UNION
                
                -- Handle first_decision_date MM/DD/YYYY format
                SELECT TRY_STRPTIME(first_decision_date, '%m/%d/%Y') as date_value 
                FROM cleaned_data 
                WHERE first_decision_date IS NOT NULL 
                AND first_decision_date NOT LIKE '%(%'
                AND LENGTH(first_decision_date) >= 8
                AND first_decision_date ~ '^[0-9/-]+$'
                AND TRY_STRPTIME(first_decision_date, '%m/%d/%Y') IS NOT NULL
                
                UNION
                
                -- Handle first_decision_date YYYY-MM-DD format
                SELECT TRY_STRPTIME(first_decision_date, '%Y-%m-%d') as date_value 
                FROM cleaned_data 
                WHERE first_decision_date IS NOT NULL 
                AND first_decision_date NOT LIKE '%(%'
                AND LENGTH(first_decision_date) >= 8
                AND first_decision_date ~ '^[0-9-]+$'
                AND TRY_STRPTIME(first_decision_date, '%Y-%m-%d') IS NOT NULL
                
                UNION
                
                -- Handle valid_from MM/DD/YYYY format
                SELECT TRY_STRPTIME(valid_from, '%m/%d/%Y') as date_value 
                FROM cleaned_data 
                WHERE valid_from IS NOT NULL 
                AND valid_from NOT LIKE '%(%'
                AND LENGTH(valid_from) >= 8
                AND valid_from ~ '^[0-9/-]+$'
                AND TRY_STRPTIME(valid_from, '%m/%d/%Y') IS NOT NULL
                
                UNION
                
                -- Handle valid_from YYYY-MM-DD format
                SELECT TRY_STRPTIME(valid_from, '%Y-%m-%d') as date_value 
                FROM cleaned_data 
                WHERE valid_from IS NOT NULL 
                AND valid_from NOT LIKE '%(%'
                AND LENGTH(valid_from) >= 8
                AND valid_from ~ '^[0-9-]+$'
                AND TRY_STRPTIME(valid_from, '%Y-%m-%d') IS NOT NULL
                
                UNION
                
                -- Handle valid_to MM/DD/YYYY format
                SELECT TRY_STRPTIME(valid_to, '%m/%d/%Y') as date_value 
                FROM cleaned_data 
                WHERE valid_to IS NOT NULL 
                AND valid_to NOT LIKE '%(%'
                AND LENGTH(valid_to) >= 8
                AND valid_to ~ '^[0-9/]+$'
                AND valid_to LIKE '%/%/%'
                AND TRY_STRPTIME(valid_to, '%m/%d/%Y') IS NOT NULL
                
                UNION
                
                -- Handle valid_to YYYY-MM-DD format
                SELECT TRY_STRPTIME(valid_to, '%Y-%m-%d') as date_value 
                FROM cleaned_data 
                WHERE valid_to IS NOT NULL 
                AND valid_to NOT LIKE '%(%'
                AND LENGTH(valid_to) >= 8
                AND valid_to ~ '^[0-9-]+$'
                AND TRY_STRPTIME(valid_to, '%Y-%m-%d') IS NOT NULL
            )
            SELECT DISTINCT
                date_value as date,
                EXTRACT(YEAR FROM date_value) as year,
                EXTRACT(MONTH FROM date_value) as month,
                EXTRACT(QUARTER FROM date_value) as quarter,
                EXTRACT(DOW FROM date_value) as day_of_week,
                MONTHNAME(date_value) as month_name,
                'Q' || CAST(EXTRACT(QUARTER FROM date_value) AS VARCHAR) as quarter_name,
                CASE 
                    WHEN EXTRACT(MONTH FROM date_value) >= 10 
                    THEN EXTRACT(YEAR FROM date_value)
                    ELSE EXTRACT(YEAR FROM date_value) - 1
                END as fiscal_year
            FROM all_dates
            WHERE date_value IS NOT NULL
            ORDER BY date_value
        """)
    
    def create_fact_table(self) -> None:
        """Create the fact table with foreign keys."""
        self.logger.info("Creating fact table in DuckDB...")
        
        self.conn.execute("""
            CREATE TABLE fact_h1b_applications AS
            SELECT 
                ROW_NUMBER() OVER () as record_id,
                
                COALESCE(db.beneficiary_key, -1) as beneficiary_key,
                COALESCE(de.employer_key, -1) as employer_key,
                COALESCE(dj.job_key, -1) as job_key,
                COALESCE(da.agent_key, -1) as agent_key,
                COALESCE(ds.status_key, -1) as status_key,
                
                -- Handle multiple date formats for rec_date
                CASE 
                    WHEN cd.rec_date IS NOT NULL AND cd.rec_date NOT LIKE '%(%'
                    THEN CASE
                        WHEN TRY_STRPTIME(cd.rec_date, '%m/%d/%Y') IS NOT NULL 
                        THEN CAST(STRFTIME('%Y%m%d', TRY_STRPTIME(cd.rec_date, '%m/%d/%Y')) AS INTEGER)
                        WHEN TRY_STRPTIME(cd.rec_date, '%Y-%m-%d') IS NOT NULL 
                        THEN CAST(STRFTIME('%Y%m%d', TRY_STRPTIME(cd.rec_date, '%Y-%m-%d')) AS INTEGER)
                        ELSE NULL
                    END
                    ELSE NULL
                END as rec_date_key,
                
                -- Handle multiple date formats for first_decision_date
                CASE 
                    WHEN cd.first_decision_date IS NOT NULL AND cd.first_decision_date NOT LIKE '%(%'
                    THEN CASE
                        WHEN TRY_STRPTIME(cd.first_decision_date, '%m/%d/%Y') IS NOT NULL 
                        THEN CAST(STRFTIME('%Y%m%d', TRY_STRPTIME(cd.first_decision_date, '%m/%d/%Y')) AS INTEGER)
                        WHEN TRY_STRPTIME(cd.first_decision_date, '%Y-%m-%d') IS NOT NULL 
                        THEN CAST(STRFTIME('%Y%m%d', TRY_STRPTIME(cd.first_decision_date, '%Y-%m-%d')) AS INTEGER)
                        ELSE NULL
                    END
                    ELSE NULL
                END as first_decision_date_key,
                
                cd.lottery_year,
                cd.ben_multi_reg_ind,
                cd.receipt_number,
                cd.source_file,
                cd.fiscal_year
                
            FROM cleaned_data cd
            
            LEFT JOIN dim_beneficiary db ON 
                cd.original_row_id = db.beneficiary_key AND 
                COALESCE(cd.country_of_birth, '') = COALESCE(db.country_of_birth, '') AND
                COALESCE(cd.country_of_nationality, '') = COALESCE(db.country_of_nationality, '') AND
                COALESCE(cd.ben_year_of_birth, '0') = COALESCE(db.ben_year_of_birth, '0') AND
                COALESCE(cd.gender, '') = COALESCE(db.gender, '')
                
            LEFT JOIN dim_employer de ON 
                cd.original_row_id = de.employer_key AND
                COALESCE(cd.employer_name, '') = COALESCE(de.employer_name, '') AND
                COALESCE(cd.fein, '') = COALESCE(de.fein, '')
                
            LEFT JOIN dim_job dj ON 
                cd.original_row_id = dj.job_key AND
                COALESCE(cd.job_title, '') = COALESCE(dj.job_title, '') AND
                COALESCE(cd.naics_code, '') = COALESCE(dj.naics_code, '')
                
            LEFT JOIN dim_agent da ON 
                cd.original_row_id = da.agent_key AND
                COALESCE(cd.agent_first_name, '') = COALESCE(da.agent_first_name, '') AND
                COALESCE(cd.agent_last_name, '') = COALESCE(da.agent_last_name, '')
                
            LEFT JOIN dim_status ds ON 
                cd.original_row_id = ds.status_key AND
                COALESCE(cd.status_type, '') = COALESCE(ds.status_type, '') AND
                COALESCE(cd.first_decision, '') = COALESCE(ds.first_decision, '')
        """)
    
    def create_lookup_tables(self) -> None:
        """Create lookup tables for reference data."""
        self.logger.info("Creating lookup tables in DuckDB...")
        
        # Country codes lookup
        self.conn.execute("""
            CREATE TABLE lookup_country_codes AS
            SELECT * FROM VALUES
                ('IND', 'India', 'Asia'),
                ('CHN', 'China', 'Asia'),
                ('KOR', 'South Korea', 'Asia'),
                ('CAN', 'Canada', 'North America'),
                ('NPL', 'Nepal', 'Asia'),
                ('USA', 'United States', 'North America')
            AS t(country_code, country_name, region)
        """)
        
        # Education levels
        self.conn.execute("""
            CREATE TABLE lookup_education_levels AS
            SELECT * FROM VALUES
                ('A', 'No Diploma', 'Basic'),
                ('B', 'High School', 'Basic'),
                ('C', 'Some College', 'Undergraduate'),
                ('D', 'College No Degree', 'Undergraduate'),
                ('E', 'Associates', 'Undergraduate'),
                ('F', 'Bachelors', 'Undergraduate'),
                ('G', 'Masters', 'Graduate'),
                ('H', 'Professional', 'Graduate'),
                ('I', 'Doctorate', 'Graduate')
            AS t(education_code, education_level, education_category)
        """)
        
        # Application status types
        self.conn.execute("""
            CREATE TABLE lookup_status_types AS
            SELECT * FROM VALUES
                ('ELIGIBLE', 'Application is eligible for lottery', 'Lottery'),
                ('SELECTED', 'Selected in H-1B lottery', 'Lottery'),
                ('CREATED', 'Application record created', 'Administrative')
            AS t(status_type, status_description, status_category)
        """)


class DatabaseOptimizer:
    """Handles database optimization and indexing."""
    
    def __init__(self, conn: duckdb.DuckDBPyConnection, logger: logging.Logger):
        """
        Initialize database optimizer.
        
        Args:
            conn: DuckDB connection object.
            logger: Logger instance for tracking operations.
        """
        self.conn = conn
        self.logger = logger
    
    def create_indexes(self) -> None:
        """Create indexes for better query performance."""
        self.logger.info("Creating indexes in DuckDB...")
        
        indexes = [
            ("idx_fact_beneficiary", "fact_h1b_applications", "beneficiary_key"),
            ("idx_fact_employer", "fact_h1b_applications", "employer_key"),
            ("idx_fact_job", "fact_h1b_applications", "job_key"),
            ("idx_fact_lottery_year", "fact_h1b_applications", "lottery_year"),
            ("idx_fact_fiscal_year", "fact_h1b_applications", "fiscal_year"),
            ("idx_fact_rec_date", "fact_h1b_applications", "rec_date_key"),
            ("idx_dim_beneficiary_id", "dim_beneficiary", "beneficiary_id"),
            ("idx_dim_employer_id", "dim_employer", "employer_id"),
            ("idx_dim_job_id", "dim_job", "job_id"),
        ]
        
        for index_name, table_name, column_name in indexes:
            try:
                self.conn.execute(f"CREATE INDEX {index_name} ON {table_name}({column_name})")
            except Exception as e:
                self.logger.warning(f"Could not create index {index_name}: {e}")
        
        self.logger.info("Indexes created successfully!")


class DataQualityChecker:
    """Performs data quality checks and validation."""
    
    def __init__(self, conn: duckdb.DuckDBPyConnection, logger: logging.Logger):
        """
        Initialize data quality checker.
        
        Args:
            conn: DuckDB connection object.
            logger: Logger instance for tracking operations.
        """
        self.conn = conn
        self.logger = logger
    
    def run_all_checks(self) -> bool:
        """
        Run all data quality checks.
        
        Returns:
            True if all checks pass, False otherwise.
        """
        self.logger.info("Running data quality checks...")
        
        try:
            self._check_table_counts()
            self._check_fact_table_integrity()
            return True
        except Exception as e:
            self.logger.error(f"Error in data quality checks: {e}")
            return False
    
    def _check_table_counts(self) -> None:
        """Check row counts for all tables."""
        tables_query = """
            SELECT table_name, estimated_size as row_count
            FROM duckdb_tables() 
            WHERE schema_name = 'main'
            ORDER BY table_name
        """
        tables_info = self.conn.execute(tables_query).fetchall()
        
        self.logger.info("Table row counts:")
        for table_name, _ in tables_info:
            if not table_name.startswith('raw_'):
                count = self.conn.execute(f"SELECT COUNT(*) FROM {table_name}").fetchone()[0]
                self.logger.info(f"  {table_name}: {count:,} records")
    
    def _check_fact_table_integrity(self) -> None:
        """Check fact table for duplicates and integrity."""
        dup_check = self.conn.execute("""
            SELECT COUNT(*) as total_records, 
                   COUNT(DISTINCT record_id) as unique_records
            FROM fact_h1b_applications
        """).fetchone()
        
        self.logger.info(f"Fact table: {dup_check[0]:,} total records, {dup_check[1]:,} unique records")


class DatabasePersistence:
    """Handles database persistence operations."""
    
    def __init__(self, logger: logging.Logger):
        """
        Initialize database persistence handler.
        
        Args:
            logger: Logger instance for tracking operations.
        """
        self.logger = logger
    
    def save_to_persistent_database(self, source_conn: duckdb.DuckDBPyConnection, 
                                   target_path: str) -> None:
        """
        Save tables to a persistent database file.
        
        Args:
            source_conn: Source database connection.
            target_path: Path to the target persistent database file.
        """
        self.logger.info(f"Saving to persistent database: {target_path}")

        # Remove existing file if it exists
        if os.path.exists(target_path):
            os.remove(target_path)
            self.logger.info(f"Removed existing database file: {target_path}")
        
        # Create persistent database connection
        with duckdb.connect(target_path) as persistent_conn:
            # Get tables to copy (exclude temporary tables)
            tables_to_keep = source_conn.execute("""
                SELECT table_name 
                FROM information_schema.tables 
                WHERE table_name NOT LIKE 'raw_%' 
                AND table_name NOT IN ('combined_data', 'cleaned_data')
                AND table_schema = 'main'
            """).fetchall()
            
            # Copy tables
            for table_info in tables_to_keep:
                table_name = table_info[0]
                df = source_conn.execute(f"SELECT * FROM {table_name}").df()
                persistent_conn.execute(f"CREATE TABLE {table_name} AS SELECT * FROM df")
                self.logger.info(f"Copied table {table_name} to persistent database")
        
        self.logger.info(f"Persistent database saved to: {target_path}")


# Configuration and Constants
class Config:
    """Configuration class for the H1B data pipeline."""
    
    CSV_FILES = [
        './data/TRK_13139_FY2021.csv',
        './data/TRK_13139_FY2022.csv', 
        './data/TRK_13139_FY2023.csv',
        './data/TRK_13139_FY2024_single_reg.csv',
        './data/TRK_13139_FY2024_multi_reg.csv'
    ]
    
    XLSX_FILE = './data/TRK_13139_I129_H1B_Registrations_FY21_FY24_FOIA_FIN.xlsx'
    PERSISTENT_DB_PATH = './data/h1bs_analytics.duckdb'
    MISSING_DATA_THRESHOLD = 0.99


def main():
    """Main execution function for the H1B data pipeline."""
    print("Starting H1B Data Analytics Pipeline...")
    print("All imports successful!")
    
    # Check memory usage
    MemoryManager.check_memory_usage()
    
    # Validate input files
    existing_files, missing_files = FileValidator.validate_files(Config.CSV_FILES)
    if missing_files:
        print(f"Warning: {len(missing_files)} files are missing")
    
    # Run the pipeline
    try:
        with H1BDataPipeline() as pipeline:
            # Load data
            data_loader = DataLoader(pipeline.conn, pipeline.logger)
            data_loader.load_csv_files(existing_files)
            
            # Transform data
            transformer = DataTransformer(pipeline.conn, pipeline.logger)
            transformer.create_combined_table()
            kept_columns = transformer.remove_columns_with_missing_data(
                'combined_data', Config.MISSING_DATA_THRESHOLD
            )
            print(f"Kept {len(kept_columns)} columns after cleaning")
            
            # Create dimensional model
            modeler = DimensionalModeler(pipeline.conn, pipeline.logger)
            modeler.create_all_dimensions()
            modeler.create_fact_table()
            modeler.create_lookup_tables()
            
            # Optimize database
            optimizer = DatabaseOptimizer(pipeline.conn, pipeline.logger)
            optimizer.create_indexes()
            
            # Run quality checks
            quality_checker = DataQualityChecker(pipeline.conn, pipeline.logger)
            quality_checker.run_all_checks()
            
            # Save to persistent database
            persistence = DatabasePersistence(pipeline.logger)
            persistence.save_to_persistent_database(
                pipeline.conn, Config.PERSISTENT_DB_PATH
            )
            
            # Final memory check
            MemoryManager.check_memory_usage()
            MemoryManager.clear_memory()
            
        print("Pipeline completed successfully!")
        
    except Exception as e:
        print(f"Pipeline failed with error: {e}")
        traceback.print_exc()


if __name__ == "__main__":
    main()