File size: 9,914 Bytes
a0bcaae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
# Copyright (c) SenseTime Research. All rights reserved.

import numpy as np
import PIL
import PIL.Image
import scipy
import scipy.ndimage
import dlib
import copy
from PIL import Image

def get_landmark(img, detector, predictor):
    """get landmark with dlib
    :return: np.array shape=(68, 2)
    """
    # detector = dlib.get_frontal_face_detector()
    # dets, _, _ = detector.run(img, 1, -1)
    dets = detector(img, 1)
    for k, d in enumerate(dets):
        shape = predictor(img, d.rect)
    t = list(shape.parts())
    a = []
    for tt in t:
        a.append([tt.x, tt.y])
    lm = np.array(a)
    
    # face rect
    face_rect = [dets[0].rect.left(), dets[0].rect.top(), dets[0].rect.right(), dets[0].rect.bottom()]
    return lm, face_rect


    

def align_face_for_insetgan(img, detector, predictor, output_size=256):
    """
    :param img: numpy array rgb
    :return: PIL Image
    """
    img_cp = copy.deepcopy(img)
    lm, face_rect = get_landmark(img, detector, predictor)

    lm_chin = lm[0: 17]  # left-right
    lm_eyebrow_left = lm[17: 22]  # left-right
    lm_eyebrow_right = lm[22: 27]  # left-right
    lm_nose = lm[27: 31]  # top-down
    lm_nostrils = lm[31: 36]  # top-down
    lm_eye_left = lm[36: 42]  # left-clockwise
    lm_eye_right = lm[42: 48]  # left-clockwise
    lm_mouth_outer = lm[48: 60]  # left-clockwise
    lm_mouth_inner = lm[60: 68]  # left-clockwise

    # Calculate auxiliary vectors.
    eye_left = np.mean(lm_eye_left, axis=0)
    eye_right = np.mean(lm_eye_right, axis=0)
    eye_avg = (eye_left + eye_right) * 0.5
    eye_to_eye = eye_right - eye_left
    mouth_left = lm_mouth_outer[0]
    mouth_right = lm_mouth_outer[6]
    mouth_avg = (mouth_left + mouth_right) * 0.5
    eye_to_mouth = mouth_avg - eye_avg

    # Choose oriented crop rectangle.
    x = eye_to_eye - np.flipud(eye_to_mouth) * [-1, 1]
    x /= np.hypot(*x)
    x *= max(np.hypot(*eye_to_eye) * 2.0, np.hypot(*eye_to_mouth) * 1.8)
    y = np.flipud(x) * [-1, 1]
    c = eye_avg + eye_to_mouth * 0.1
    quad = np.stack([c - x - y, c - x + y, c + x + y, c + x - y])
    qsize = np.hypot(*x) * 2

    # read image
    # opencv to PIL
    img = PIL.Image.fromarray(img_cp)
    # img = PIL.Image.open(filepath)

    transform_size = output_size
    enable_padding = False

    # Shrink.
    # shrink = int(np.floor(qsize / output_size * 0.5))
    # if shrink > 1:
    #     rsize = (int(np.rint(float(img.size[0]) / shrink)), int(np.rint(float(img.size[1]) / shrink)))
    #     img = img.resize(rsize, PIL.Image.ANTIALIAS)
    #     quad /= shrink
    #     qsize /= shrink

    # Crop.
    border = max(int(np.rint(qsize * 0.1)), 3)
    crop = (int(np.floor(min(quad[:, 0]))), int(np.floor(min(quad[:, 1]))), int(np.ceil(max(quad[:, 0]))),
            int(np.ceil(max(quad[:, 1]))))
    
    # crop = (max(crop[0] - border, 0), max(crop[1] - border, 0), min(crop[2] + border, img.size[0]),
    #         min(crop[3] + border, img.size[1]))
    # img.save("debug/raw.jpg")
    if crop[2] - crop[0] < img.size[0] or crop[3] - crop[1] < img.size[1]:
        img = img.crop(crop)
        quad -= crop[0:2]
    # img.save("debug/crop.jpg")
    # Pad.
    # pad = (int(np.floor(min(quad[:, 0]))), int(np.floor(min(quad[:, 1]))), int(np.ceil(max(quad[:, 0]))),
    #        int(np.ceil(max(quad[:, 1]))))
    # pad = (max(-pad[0] + border, 0), max(-pad[1] + border, 0), max(pad[2] - img.size[0] + border, 0),
    #        max(pad[3] - img.size[1] + border, 0))
    # if enable_padding and max(pad) > border - 4:
    #     pad = np.maximum(pad, int(np.rint(qsize * 0.3)))
    #     img = np.pad(np.float32(img), ((pad[1], pad[3]), (pad[0], pad[2]), (0, 0)), 'reflect')
    #     h, w, _ = img.shape
    #     y, x, _ = np.ogrid[:h, :w, :1]
    #     mask = np.maximum(1.0 - np.minimum(np.float32(x) / pad[0], np.float32(w - 1 - x) / pad[2]),
    #                       1.0 - np.minimum(np.float32(y) / pad[1], np.float32(h - 1 - y) / pad[3]))
    #     blur = qsize * 0.02
    #     img += (scipy.ndimage.gaussian_filter(img, [blur, blur, 0]) - img) * np.clip(mask * 3.0 + 1.0, 0.0, 1.0)
    #     img += (np.median(img, axis=(0, 1)) - img) * np.clip(mask, 0.0, 1.0)
    #     img = PIL.Image.fromarray(np.uint8(np.clip(np.rint(img), 0, 255)), 'RGB')
    #     quad += pad[:2]

    # Transform.
    # crop shape to transform shape
    # nw = 
    # print(img.size, quad+0.5, np.bound((quad+0.5).flatten()))
    # assert False
    # img = img.transform((transform_size, transform_size), PIL.Image.QUAD, (quad + 0.5).flatten(), PIL.Image.BILINEAR)
    
    # img.save("debug/transform.jpg")
    # if output_size < transform_size:
    img = img.resize((output_size, output_size), PIL.Image.ANTIALIAS)
    # img.save("debug/resize.jpg")
    # print((quad+crop[0:2]).flatten())
    # assert False
    # Return aligned image.
    
    return img, crop, face_rect




def align_face_for_projector(img, detector, predictor, output_size):
    """
    :param filepath: str
    :return: PIL Image
    """

    img_cp = copy.deepcopy(img)
    lm, face_rect = get_landmark(img, detector, predictor)


    lm_chin = lm[0: 17]  # left-right
    lm_eyebrow_left = lm[17: 22]  # left-right
    lm_eyebrow_right = lm[22: 27]  # left-right
    lm_nose = lm[27: 31]  # top-down
    lm_nostrils = lm[31: 36]  # top-down
    lm_eye_left = lm[36: 42]  # left-clockwise
    lm_eye_right = lm[42: 48]  # left-clockwise
    lm_mouth_outer = lm[48: 60]  # left-clockwise
    lm_mouth_inner = lm[60: 68]  # left-clockwise

    # Calculate auxiliary vectors.
    eye_left = np.mean(lm_eye_left, axis=0)
    eye_right = np.mean(lm_eye_right, axis=0)
    eye_avg = (eye_left + eye_right) * 0.5
    eye_to_eye = eye_right - eye_left
    mouth_left = lm_mouth_outer[0]
    mouth_right = lm_mouth_outer[6]
    mouth_avg = (mouth_left + mouth_right) * 0.5
    eye_to_mouth = mouth_avg - eye_avg

    # Choose oriented crop rectangle.
    x = eye_to_eye - np.flipud(eye_to_mouth) * [-1, 1]
    x /= np.hypot(*x)
    x *= max(np.hypot(*eye_to_eye) * 2.0, np.hypot(*eye_to_mouth) * 1.8)
    y = np.flipud(x) * [-1, 1]
    c = eye_avg + eye_to_mouth * 0.1
    quad = np.stack([c - x - y, c - x + y, c + x + y, c + x - y])
    qsize = np.hypot(*x) * 2

    # read image
    img = PIL.Image.fromarray(img_cp)

    transform_size = output_size
    enable_padding = True

    # Shrink.
    shrink = int(np.floor(qsize / output_size * 0.5))
    if shrink > 1:
        rsize = (int(np.rint(float(img.size[0]) / shrink)), int(np.rint(float(img.size[1]) / shrink)))
        img = img.resize(rsize, PIL.Image.ANTIALIAS)
        quad /= shrink
        qsize /= shrink

    # Crop.
    border = max(int(np.rint(qsize * 0.1)), 3)
    crop = (int(np.floor(min(quad[:, 0]))), int(np.floor(min(quad[:, 1]))), int(np.ceil(max(quad[:, 0]))),
            int(np.ceil(max(quad[:, 1]))))
    crop = (max(crop[0] - border, 0), max(crop[1] - border, 0), min(crop[2] + border, img.size[0]),
            min(crop[3] + border, img.size[1]))
    if crop[2] - crop[0] < img.size[0] or crop[3] - crop[1] < img.size[1]:
        img = img.crop(crop)
        quad -= crop[0:2]

    # Pad.
    pad = (int(np.floor(min(quad[:, 0]))), int(np.floor(min(quad[:, 1]))), int(np.ceil(max(quad[:, 0]))),
           int(np.ceil(max(quad[:, 1]))))
    pad = (max(-pad[0] + border, 0), max(-pad[1] + border, 0), max(pad[2] - img.size[0] + border, 0),
           max(pad[3] - img.size[1] + border, 0))
    if enable_padding and max(pad) > border - 4:
        pad = np.maximum(pad, int(np.rint(qsize * 0.3)))
        img = np.pad(np.float32(img), ((pad[1], pad[3]), (pad[0], pad[2]), (0, 0)), 'reflect')
        h, w, _ = img.shape
        y, x, _ = np.ogrid[:h, :w, :1]
        mask = np.maximum(1.0 - np.minimum(np.float32(x) / pad[0], np.float32(w - 1 - x) / pad[2]),
                          1.0 - np.minimum(np.float32(y) / pad[1], np.float32(h - 1 - y) / pad[3]))
        blur = qsize * 0.02
        img += (scipy.ndimage.gaussian_filter(img, [blur, blur, 0]) - img) * np.clip(mask * 3.0 + 1.0, 0.0, 1.0)
        img += (np.median(img, axis=(0, 1)) - img) * np.clip(mask, 0.0, 1.0)
        img = PIL.Image.fromarray(np.uint8(np.clip(np.rint(img), 0, 255)), 'RGB')
        quad += pad[:2]

    # Transform.
    img = img.transform((transform_size, transform_size), PIL.Image.QUAD, (quad + 0.5).flatten(), PIL.Image.BILINEAR)
    if output_size < transform_size:
        img = img.resize((output_size, output_size), PIL.Image.ANTIALIAS)

    # Return aligned image.
    return img


def reverse_quad_transform(image, quad_to_map_to, alpha):
    # forward mapping, for simplicity

    result = Image.new("RGBA",image.size)
    result_pixels = result.load()

    width, height = result.size

    for y in range(height):
        for x in range(width):
            result_pixels[x,y] = (0,0,0,0)

    p1 = (quad_to_map_to[0],quad_to_map_to[1])
    p2 = (quad_to_map_to[2],quad_to_map_to[3])
    p3 = (quad_to_map_to[4],quad_to_map_to[5])
    p4 = (quad_to_map_to[6],quad_to_map_to[7])

    p1_p2_vec = (p2[0] - p1[0],p2[1] - p1[1])
    p4_p3_vec = (p3[0] - p4[0],p3[1] - p4[1])

    for y in range(height):
        for x in range(width):
            pixel = image.getpixel((x,y))

            y_percentage = y / float(height)
            x_percentage = x / float(width)

            # interpolate vertically
            pa = (p1[0] + p1_p2_vec[0] * y_percentage, p1[1] + p1_p2_vec[1] * y_percentage) 
            pb = (p4[0] + p4_p3_vec[0] * y_percentage, p4[1] + p4_p3_vec[1] * y_percentage)

            pa_to_pb_vec = (pb[0] - pa[0],pb[1] - pa[1])

            # interpolate horizontally
            p = (pa[0] + pa_to_pb_vec[0] * x_percentage, pa[1] + pa_to_pb_vec[1] * x_percentage)

            try:
                result_pixels[p[0],p[1]] = (pixel[0],pixel[1],pixel[2],min(int(alpha * 255),pixel[3]))
            except Exception:
                pass

    return result