File size: 2,002 Bytes
fe1089d
 
 
 
d2116db
 
fe1089d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d2116db
 
 
 
 
 
 
 
 
 
 
fe1089d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d2116db
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
# formatting util module providing formatting functions for the model input and output

# external imports
import re
import numpy as np
from numpy import ndarray


# function to format the model reponse nicely
def format_output_text(output: list):
    # remove special tokens from list
    formatted_output = format_tokens(output)

    # start string with first list item if it is not empty
    if formatted_output[0] != "":
        output_str = formatted_output[0]
    else:
        # alternatively start with second list item
        output_str = formatted_output[1]

    # add all other list items with a space in between
    for txt in formatted_output[1:]:
        # check if the token is a punctuation mark
        if txt in [".", ",", "!", "?"]:
            # add punctuation mark without space
            output_str += txt
        # add token with space if not empty
        elif txt != "":
            output_str += " " + txt

    # return the combined string with multiple spaces removed
    return re.sub(" +", " ", output_str)


# format the tokens by removing special tokens and special characters
def format_tokens(tokens: list):
    # define special tokens to remove and initialize empty list
    special_tokens = [
        "[CLS]",
        "[SEP]",
        "[PAD]",
        "[UNK]",
        "[MASK]",
        "▁",
        "Ġ",
        "</w>",
        "/n",
    ]
    updated_tokens = []

    # loop through tokens
    for t in tokens:
        # remove special token from start of token if found
        if t.startswith("▁"):
            t = t.lstrip("▁")

        # loop through special tokens and remove them if found
        for s in special_tokens:
            t = t.replace(s, "")

        # add token to list
        updated_tokens.append(t)

    # return the list of tokens
    return updated_tokens


# function to flatten values into a 2d list by averaging the explanation values
def flatten_values(values: ndarray, axis: int = 0):
    return np.mean(values, axis=axis)