File size: 1,037 Bytes
b9efb29
0a4ff51
8a82feb
b9efb29
4b1f91a
 
 
 
 
8a82feb
b9efb29
 
8a82feb
b9efb29
8a82feb
 
0a4ff51
8a82feb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
import gradio as gr
from PIL import Image
from fastai.vision.all import load_learner


def is_cat(x):
    return x[0].isupper()


learn = load_learner("model.pkl")


labels = learn.dls.vocab


def predict(img):
    img = Image.open(img)
    pred, pred_idx, probs = learn.predict(img)
    return {labels[i]: float(probs[i]) for i in range(len(labels))}


title = "Pet Breed Classifier"
description = "A pet breed classifier trained on the Oxford Pets dataset with fastai. Created as a demo for Gradio and HuggingFace Spaces."
article = "<p style='text-align: center'><a href='https://tmabraham.github.io/blog/gradio_hf_spaces_tutorial' target='_blank'>Blog post</a></p>"
examples = ["siamese.PNG"]
interpretation = "default"
enable_queue = True

gr.Interface(
    fn=predict,
    inputs=gr.inputs.Image(shape=(512, 512)),
    outputs=gr.outputs.Label(num_top_classes=3),
    title=title,
    description=description,
    article=article,
    examples=examples,
    interpretation=interpretation,
    enable_queue=enable_queue,
).launch()