File size: 9,546 Bytes
0164e4a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
import os
import torch
import argparse
import numpy as np
from scipy.io.wavfile import write
import torchaudio
import utils
from Mels_preprocess import MelSpectrogramFixed
from torch.nn import functional as F
from hierspeechpp_speechsynthesizer import (
    SynthesizerTrn, Wav2vec2
)
from ttv_v1.text import text_to_sequence
from ttv_v1.t2w2v_transformer import SynthesizerTrn as Text2W2V
from speechsr24k.speechsr import SynthesizerTrn as SpeechSR24
from speechsr48k.speechsr import SynthesizerTrn as SpeechSR48
from denoiser.generator import MPNet
from denoiser.infer import denoise

import amfm_decompy.basic_tools as basic
import amfm_decompy.pYAAPT as pYAAPT

seed = 1111
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
np.random.seed(seed)

def get_yaapt_f0(audio, rate=16000, interp=False):
    frame_length = 20.0
    to_pad = int(frame_length / 1000 * rate) // 2

    f0s = []
    for y in audio.astype(np.float64):
        y_pad = np.pad(y.squeeze(), (to_pad, to_pad), "constant", constant_values=0)
        signal = basic.SignalObj(y_pad, rate)
        pitch = pYAAPT.yaapt(signal, **{'frame_length': frame_length, 'frame_space': 5.0, 'nccf_thresh1': 0.25,
                                        'tda_frame_length': 25.0, 'f0_max':1100})
        if interp:
            f0s += [pitch.samp_interp[None, None, :]]
        else:
            f0s += [pitch.samp_values[None, None, :]] 
    f0 = np.vstack(f0s)
    return f0

def load_text(fp):
    with open(fp, 'r') as f:
        filelist = [line.strip() for line in f.readlines()]
    return filelist
def load_checkpoint(filepath, device):
    print(filepath)
    assert os.path.isfile(filepath)
    print("Loading '{}'".format(filepath))
    checkpoint_dict = torch.load(filepath, map_location=device)
    print("Complete.")
    return checkpoint_dict
def get_param_num(model):
    num_param = sum(param.numel() for param in model.parameters())
    return num_param
def intersperse(lst, item):
  result = [item] * (len(lst) * 2 + 1)
  result[1::2] = lst
  return result

def add_blank_token(text):

    text_norm = intersperse(text, 0)
    text_norm = torch.LongTensor(text_norm)
    return text_norm

def VC(a, hierspeech):
    
    net_g, speechsr, denoiser, mel_fn, w2v = hierspeech

    os.makedirs(a.output_dir, exist_ok=True)
   
    source_audio, sample_rate = torchaudio.load(a.source_speech)
    if sample_rate != 16000:
        source_audio = torchaudio.functional.resample(source_audio, sample_rate, 16000, resampling_method="kaiser_window")
    p = (source_audio.shape[-1] // 1280 + 1) * 1280 - source_audio.shape[-1]
    source_audio = torch.nn.functional.pad(source_audio, (0, p), mode='constant').data
    file_name_s = os.path.splitext(os.path.basename(a.source_speech))[0]

    try:
        f0 = get_yaapt_f0(source_audio.numpy())
    except:
        f0 = np.zeros((1, 1, source_audio.shape[-1] // 80))
        f0 = f0.astype(np.float32)
        f0 = f0.squeeze(0) 

    ii = f0 != 0
    f0[ii] = (f0[ii] - f0[ii].mean()) / f0[ii].std()

    y_pad = F.pad(source_audio, (40, 40), "reflect")
    x_w2v = w2v(y_pad.cuda())
    x_length = torch.LongTensor([x_w2v.size(2)]).to(device)

    # Prompt load
    target_audio, sample_rate = torchaudio.load(a.target_speech)
    # support only single channel
    target_audio = target_audio[:1,:] 
    # Resampling
    if sample_rate != 16000:
        target_audio = torchaudio.functional.resample(target_audio, sample_rate, 16000, resampling_method="kaiser_window") 
    if a.scale_norm == 'prompt':
        prompt_audio_max = torch.max(target_audio.abs())
    try:
        t_f0 = get_yaapt_f0(target_audio.numpy())
    except:
        t_f0 = np.zeros((1, 1, target_audio.shape[-1] // 80))
        t_f0 = t_f0.astype(np.float32)
        t_f0 = t_f0.squeeze(0)
    j = t_f0 != 0

    f0[ii] = ((f0[ii] * t_f0[j].std()) + t_f0[j].mean()).clip(min=0)
    denorm_f0 = torch.log(torch.FloatTensor(f0+1).cuda())
    # We utilize a hop size of 320 but denoiser uses a hop size of 400 so we utilize a hop size of 1600
    ori_prompt_len = target_audio.shape[-1]
    p = (ori_prompt_len // 1600 + 1) * 1600 - ori_prompt_len
    target_audio = torch.nn.functional.pad(target_audio, (0, p), mode='constant').data

    file_name_t = os.path.splitext(os.path.basename(a.target_speech))[0]

    # If you have a memory issue during denosing the prompt, try to denoise the prompt with cpu before TTS 
    # We will have a plan to replace a memory-efficient denoiser 
    if a.denoise_ratio == 0:
        target_audio = torch.cat([target_audio.cuda(), target_audio.cuda()], dim=0)
    else:
        with torch.no_grad():
            denoised_audio = denoise(target_audio.squeeze(0).cuda(), denoiser, hps_denoiser)
        target_audio = torch.cat([target_audio.cuda(), denoised_audio[:,:target_audio.shape[-1]]], dim=0)

    
    target_audio = target_audio[:,:ori_prompt_len]  # 20231108 We found that large size of padding decreases a performance so we remove the paddings after denosing.

    trg_mel = mel_fn(target_audio.cuda())

    trg_length = torch.LongTensor([trg_mel.size(2)]).to(device)
    trg_length2 = torch.cat([trg_length,trg_length], dim=0)


    with torch.no_grad():
        
        ## Hierarchical Speech Synthesizer (W2V, F0 --> 16k Audio)
        converted_audio = \
            net_g.voice_conversion_noise_control(x_w2v, x_length, trg_mel, trg_length2, denorm_f0, noise_scale=a.noise_scale_vc, denoise_ratio=a.denoise_ratio)
                
        ## SpeechSR (Optional) (16k Audio --> 24k or 48k Audio)
        if a.output_sr == 48000 or 24000:
            converted_audio = speechsr(converted_audio)

    converted_audio = converted_audio.squeeze()
    
    if a.scale_norm == 'prompt':
        converted_audio = converted_audio / (torch.abs(converted_audio).max()) * 32767.0 * prompt_audio_max
    else:
        converted_audio = converted_audio / (torch.abs(converted_audio).max()) * 32767.0 * 0.999 

    converted_audio = converted_audio.cpu().numpy().astype('int16')

    file_name2 = "{}.wav".format(file_name_s+"_to_"+file_name_t)
    output_file = os.path.join(a.output_dir, file_name2)
    
    if a.output_sr == 48000:
        write(output_file, 48000, converted_audio)
    elif a.output_sr == 24000:
        write(output_file, 24000, converted_audio)
    else:
        write(output_file, 16000, converted_audio)

def model_load(a):
    mel_fn = MelSpectrogramFixed(
        sample_rate=hps.data.sampling_rate,
        n_fft=hps.data.filter_length,
        win_length=hps.data.win_length,
        hop_length=hps.data.hop_length,
        f_min=hps.data.mel_fmin,
        f_max=hps.data.mel_fmax,
        n_mels=hps.data.n_mel_channels,
        window_fn=torch.hann_window
    ).cuda()
    w2v = Wav2vec2().cuda()

    net_g = SynthesizerTrn(hps.data.filter_length // 2 + 1,
        hps.train.segment_size // hps.data.hop_length,
        **hps.model).cuda()
    net_g.load_state_dict(torch.load(a.ckpt))
    _ = net_g.eval()

    if a.output_sr == 48000:
        speechsr = SpeechSR48(h_sr48.data.n_mel_channels,
            h_sr48.train.segment_size // h_sr48.data.hop_length,
            **h_sr48.model).cuda()
        utils.load_checkpoint(a.ckpt_sr48, speechsr, None)
        speechsr.eval()
       
    elif a.output_sr == 24000:
        speechsr = SpeechSR24(h_sr.data.n_mel_channels,
        h_sr.train.segment_size // h_sr.data.hop_length,
        **h_sr.model).cuda()
        utils.load_checkpoint(a.ckpt_sr, speechsr, None)
        speechsr.eval()
      
    else:
        speechsr = None
    
    denoiser = MPNet(hps_denoiser).cuda()
    state_dict = load_checkpoint(a.denoiser_ckpt, device)
    denoiser.load_state_dict(state_dict['generator'])
    denoiser.eval()
    return net_g, speechsr, denoiser, mel_fn, w2v

def inference(a):
    
    hierspeech = model_load(a) 

    VC(a, hierspeech)

def main():
    print('Initializing Inference Process..')

    parser = argparse.ArgumentParser()
    parser.add_argument('--source_speech', default='example/reference_2.wav')
    parser.add_argument('--target_speech', default='example/reference_1.wav')
    parser.add_argument('--output_dir', default='output')
    parser.add_argument('--ckpt', default='./logs/hierspeechpp_eng_kor/hierspeechpp_v2_ckpt.pth')
    parser.add_argument('--ckpt_sr', type=str, default='./speechsr24k/G_340000.pth')  
    parser.add_argument('--ckpt_sr48', type=str, default='./speechsr48k/G_100000.pth')  
    parser.add_argument('--denoiser_ckpt', type=str, default='denoiser/g_best')
    parser.add_argument('--scale_norm', type=str, default='max')
    parser.add_argument('--output_sr', type=float, default=48000)
    parser.add_argument('--noise_scale_ttv', type=float,
                        default=0.333)
    parser.add_argument('--noise_scale_vc', type=float,
                        default=0.333)
    parser.add_argument('--denoise_ratio', type=float,
                        default=0.8)
    a = parser.parse_args()

    global device, hps, h_sr,h_sr48, hps_denoiser
    device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

    hps = utils.get_hparams_from_file(os.path.join(os.path.split(a.ckpt)[0], 'config.json'))
    h_sr = utils.get_hparams_from_file(os.path.join(os.path.split(a.ckpt_sr)[0], 'config.json') )
    h_sr48 = utils.get_hparams_from_file(os.path.join(os.path.split(a.ckpt_sr48)[0], 'config.json') )
    hps_denoiser = utils.get_hparams_from_file(os.path.join(os.path.split(a.denoiser_ckpt)[0], 'config.json'))

    inference(a)

if __name__ == '__main__':
    main()