File size: 15,918 Bytes
0164e4a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
import torch
from torch import nn
from torch.nn import functional as F
from ttv_v1 import modules
import attentions

from torch.nn import Conv1d, ConvTranspose1d
from torch.nn.utils import weight_norm, remove_weight_norm
from commons import init_weights

import typing as tp
import transformers
import math
from ttv_v1.styleencoder import StyleEncoder
import commons
from ttv_v1.modules import WN

def get_2d_padding(kernel_size: tp.Tuple[int, int], dilation: tp.Tuple[int, int] = (1, 1)):
    return (((kernel_size[0] - 1) * dilation[0]) // 2, ((kernel_size[1] - 1) * dilation[1]) // 2)

class Wav2vec2(torch.nn.Module):
    def __init__(self, layer=7):

        """we use the intermediate features of xls-r-300m.
           More specifically, we used the output from the 12th layer of the 24-layer transformer encoder.
        """
        super().__init__()

        # self.wav2vec2 = transformers.Wav2Vec2ForPreTraining.from_pretrained("facebook/wav2vec2-xls-r-300m")
        self.wav2vec2 = transformers.Wav2Vec2ForPreTraining.from_pretrained("facebook/mms-300m")

        for param in self.wav2vec2.parameters():
            param.requires_grad = False
            param.grad = None
        self.wav2vec2.eval()
        self.feature_layer = layer
    @torch.no_grad()
    def forward(self, x):
        """
        Args:
            x: torch.Tensor of shape (B x t)
        Returns:
            y: torch.Tensor of shape(B x C x t)
        """
        outputs = self.wav2vec2(x.squeeze(1), output_hidden_states=True)
        y = outputs.hidden_states[self.feature_layer]   
        y = y.permute((0, 2, 1))   
        return y

class TextEncoder(nn.Module):
  def __init__(self,
      n_vocab,
      out_channels,
      hidden_channels,
      filter_channels,
      n_heads,
      n_layers,
      kernel_size,
      p_dropout):
    super().__init__()
    self.n_vocab = n_vocab
    self.out_channels = out_channels
    self.hidden_channels = hidden_channels
    self.filter_channels = filter_channels
    self.n_heads = n_heads
    self.n_layers = n_layers
    self.kernel_size = kernel_size
    self.p_dropout = p_dropout

    self.emb = nn.Embedding(n_vocab, hidden_channels)
    nn.init.normal_(self.emb.weight, 0.0, hidden_channels**-0.5)
    self.cond = nn.Conv1d(256, hidden_channels, 1)

    self.encoder = attentions.Encoder(
      hidden_channels,
      filter_channels,
      n_heads,
      n_layers,
      kernel_size,
      p_dropout)
    self.encoder2 = attentions.Encoder(
      hidden_channels,
      filter_channels,
      n_heads,
      n_layers,
      kernel_size,
      p_dropout)
    self.proj= nn.Conv1d(hidden_channels, out_channels * 2, 1)

  def forward(self, x, x_lengths, g):
    x = self.emb(x) * math.sqrt(self.hidden_channels) # [b, t, h]
    x = torch.transpose(x, 1, -1) # [b, h, t]
    x_mask = torch.unsqueeze(commons.sequence_mask(x_lengths, x.size(2)), 1).to(x.dtype)
    
    x = self.encoder(x * x_mask, x_mask)
    
    x = x + self.cond(g)
    x = self.encoder2(x * x_mask, x_mask)
    stats = self.proj(x) * x_mask

    m, logs = torch.split(stats, self.out_channels, dim=1)
    return x, m, logs, x_mask
  

class ResidualCouplingBlock_Transformer(nn.Module):
  def __init__(self,
      channels,
      hidden_channels,
      kernel_size,
      dilation_rate,
      n_layers=3,
      n_flows=4,
      gin_channels=0):
    super().__init__()
    self.channels = channels
    self.hidden_channels = hidden_channels
    self.kernel_size = kernel_size
    self.dilation_rate = dilation_rate
    self.n_layers = n_layers
    self.n_flows = n_flows
    self.gin_channels = gin_channels
    self.cond_block = torch.nn.Sequential(torch.nn.Linear(gin_channels, 4 * hidden_channels),
                                            nn.SiLU(), torch.nn.Linear(4 * hidden_channels, hidden_channels))

    self.flows = nn.ModuleList()
    for i in range(n_flows):
      self.flows.append(modules.ResidualCouplingLayer_Transformer_simple(channels, hidden_channels, kernel_size, dilation_rate, n_layers, gin_channels=gin_channels, mean_only=True, attention_head=4))
      self.flows.append(modules.Flip())

  def forward(self, x, x_mask, g=None, reverse=False):

    g = self.cond_block(g.squeeze(2))

    if not reverse:
      for flow in self.flows:
        x, _ = flow(x, x_mask, g=g, reverse=reverse)
    else:
      for flow in reversed(self.flows):
        x = flow(x, x_mask, g=g, reverse=reverse)
    return x
class PosteriorEncoder(nn.Module):
  def __init__(self,
      in_channels,
      out_channels,
      hidden_channels,
      kernel_size,
      dilation_rate,
      n_layers,
      gin_channels=0):
    super().__init__()
    self.in_channels = in_channels
    self.out_channels = out_channels
    self.hidden_channels = hidden_channels
    self.kernel_size = kernel_size
    self.dilation_rate = dilation_rate
    self.n_layers = n_layers
    self.gin_channels = gin_channels

    self.pre = nn.Conv1d(in_channels, hidden_channels, 1)
    self.enc = modules.WN(hidden_channels, kernel_size, dilation_rate, n_layers, gin_channels=gin_channels)
    self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1)

  def forward(self, x, x_mask, g=None):

    x = self.pre(x) * x_mask
    x = self.enc(x, x_mask, g=g)
    stats = self.proj(x) * x_mask
    m, logs = torch.split(stats, self.out_channels, dim=1)
    z = (m + torch.randn_like(m) * torch.exp(logs)) * x_mask
    return z, m, logs


class StochasticDurationPredictor(nn.Module):
  def __init__(self, in_channels, filter_channels, kernel_size, p_dropout, n_flows=4, gin_channels=0):
    super().__init__()
    filter_channels = in_channels # it needs to be removed from future version.
    self.in_channels = in_channels
    self.filter_channels = filter_channels
    self.kernel_size = kernel_size
    self.p_dropout = p_dropout
    self.n_flows = n_flows
    self.gin_channels = gin_channels

    self.log_flow = modules.Log()
    self.flows = nn.ModuleList()
    self.flows.append(modules.ElementwiseAffine(2))
    for i in range(n_flows):
      self.flows.append(modules.ConvFlow(2, filter_channels, kernel_size, n_layers=3))
      self.flows.append(modules.Flip())

    self.post_pre = nn.Conv1d(1, filter_channels, 1)
    self.post_proj = nn.Conv1d(filter_channels, filter_channels, 1)
    self.post_convs = modules.DDSConv(filter_channels, kernel_size, n_layers=3, p_dropout=p_dropout)
    self.post_flows = nn.ModuleList()
    self.post_flows.append(modules.ElementwiseAffine(2))
    for i in range(4):
      self.post_flows.append(modules.ConvFlow(2, filter_channels, kernel_size, n_layers=3))
      self.post_flows.append(modules.Flip())

    self.pre = nn.Conv1d(in_channels, filter_channels, 1)
    self.proj = nn.Conv1d(filter_channels, filter_channels, 1)
    self.convs = modules.DDSConv(filter_channels, kernel_size, n_layers=3, p_dropout=p_dropout)
    if gin_channels != 0:
      self.cond = nn.Conv1d(gin_channels, filter_channels, 1)

  def forward(self, x, x_mask, w=None, g=None, reverse=False, noise_scale=1.0):
    x = torch.detach(x)
    x = self.pre(x)
    if g is not None:
      g = torch.detach(g)
      x = x + self.cond(g)
    x = self.convs(x, x_mask)
    x = self.proj(x) * x_mask

    if not reverse:
      flows = self.flows
      assert w is not None

      logdet_tot_q = 0
      h_w = self.post_pre(w)
      h_w = self.post_convs(h_w, x_mask)
      h_w = self.post_proj(h_w) * x_mask
      e_q = torch.randn(w.size(0), 2, w.size(2)).to(device=x.device, dtype=x.dtype) * x_mask
      z_q = e_q
      for flow in self.post_flows:
        z_q, logdet_q = flow(z_q, x_mask, g=(x + h_w))
        logdet_tot_q += logdet_q
      z_u, z1 = torch.split(z_q, [1, 1], 1)
      u = torch.sigmoid(z_u) * x_mask
      z0 = (w - u) * x_mask
      logdet_tot_q += torch.sum((F.logsigmoid(z_u) + F.logsigmoid(-z_u)) * x_mask, [1,2])
      logq = torch.sum(-0.5 * (math.log(2*math.pi) + (e_q**2)) * x_mask, [1,2]) - logdet_tot_q

      logdet_tot = 0
      z0, logdet = self.log_flow(z0, x_mask)
      logdet_tot += logdet
      z = torch.cat([z0, z1], 1)
      for flow in flows:
        z, logdet = flow(z, x_mask, g=x, reverse=reverse)
        logdet_tot = logdet_tot + logdet
      nll = torch.sum(0.5 * (math.log(2*math.pi) + (z**2)) * x_mask, [1,2]) - logdet_tot
      return nll + logq # [b]
    else:
      flows = list(reversed(self.flows))
      flows = flows[:-2] + [flows[-1]] # remove a useless vflow
      z = torch.randn(x.size(0), 2, x.size(2)).to(device=x.device, dtype=x.dtype) * noise_scale
      for flow in flows:
        z = flow(z, x_mask, g=x, reverse=reverse)
      z0, z1 = torch.split(z, [1, 1], 1)
      logw = z0
      return logw
  
class W2VDecoder(nn.Module):
    def __init__(self,
                 in_channels,
                 hidden_channels,
                 kernel_size,
                 dilation_rate,
                 n_layers,
                 output_size=1024,
                 gin_channels=0,
                 p_dropout=0):
        super().__init__()
        self.in_channels = in_channels
        self.hidden_channels = hidden_channels
        self.kernel_size = kernel_size
        self.dilation_rate = dilation_rate
        self.n_layers = n_layers
        self.gin_channels = gin_channels
        self.p_dropout = p_dropout

        self.pre = nn.Conv1d(in_channels, hidden_channels, 1)
        self.enc = WN(hidden_channels, kernel_size, dilation_rate, n_layers, gin_channels=gin_channels, p_dropout=p_dropout)
        self.proj = nn.Conv1d(hidden_channels, output_size, 1)

    def forward(self, x, x_mask, g=None):
        x = self.pre(x * x_mask) * x_mask
        x = self.enc(x, x_mask, g=g)
        x = self.proj(x) * x_mask

        return x


class PitchPredictor(nn.Module):
  def __init__(self):
    super().__init__()

    resblock_kernel_sizes = [3,5,7]
    upsample_rates = [2,2]
    initial_channel = 1024
    upsample_initial_channel = 256
    upsample_kernel_sizes = [4,4]
    resblock_dilation_sizes = [[1,3,5], [1,3,5], [1,3,5]]

    self.num_kernels = len(resblock_kernel_sizes)
    self.num_upsamples = len(upsample_rates)
    self.conv_pre = Conv1d(initial_channel, upsample_initial_channel, 7, 1, padding=3)

    resblock = modules.ResBlock1

    self.ups = nn.ModuleList()
    for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)):
        self.ups.append(weight_norm(
            ConvTranspose1d(upsample_initial_channel//(2**i), upsample_initial_channel//(2**(i+1)),
                            k, u, padding=(k-u)//2)))

    self.resblocks = nn.ModuleList()
    for i in range(len(self.ups)):
        ch = upsample_initial_channel//(2**(i+1))
        for j, (k, d) in enumerate(zip(resblock_kernel_sizes, resblock_dilation_sizes)):
            self.resblocks.append(resblock(ch, k, d))

    self.conv_post = Conv1d(ch, 1, 7, 1, padding=3, bias=False)
    self.ups.apply(init_weights)

    self.cond = Conv1d(256, upsample_initial_channel, 1)

  def forward(self, x,  g):

    x = self.conv_pre(x) + self.cond(g)

    for i in range(self.num_upsamples):
      x = F.leaky_relu(x, modules.LRELU_SLOPE)
      x = self.ups[i](x)
      xs = None
      for j in range(self.num_kernels):
        if xs is None:
          xs = self.resblocks[i*self.num_kernels+j](x)
        else:
          xs += self.resblocks[i*self.num_kernels+j](x)
      x = xs / self.num_kernels

    x = F.leaky_relu(x)
    ## Predictor
    x = self.conv_post(x)

    return x
class SynthesizerTrn(nn.Module):
  """
  Synthesizer for Training
  """

  def __init__(self,

    spec_channels,
    segment_size,
    inter_channels,
    hidden_channels,
    filter_channels,
    n_heads,
    n_layers,
    kernel_size,
    p_dropout,
    resblock,
    resblock_kernel_sizes,
    resblock_dilation_sizes,
    gin_channels=256,
    prosody_size=20,
    cfg=False,
    **kwargs):

    super().__init__()
    self.spec_channels = spec_channels
    self.inter_channels = inter_channels
    self.hidden_channels = hidden_channels
    self.filter_channels = filter_channels
    self.n_heads = n_heads
    self.n_layers = n_layers
    self.kernel_size = kernel_size
    self.p_dropout = p_dropout
    self.resblock = resblock
    self.resblock_kernel_sizes = resblock_kernel_sizes
    self.resblock_dilation_sizes = resblock_dilation_sizes
    self.segment_size = segment_size
    self.mel_size = prosody_size

    self.enc_q = PosteriorEncoder(1024, inter_channels, hidden_channels, 5, 1, 16,  gin_channels=256)
    self.enc_p = TextEncoder(178, out_channels=inter_channels, hidden_channels=inter_channels, filter_channels=inter_channels*4, 
                                 n_heads=4, n_layers=3, kernel_size=9, p_dropout=0.2)
    
    self.flow = ResidualCouplingBlock_Transformer(inter_channels, hidden_channels, 5, 1, 3, gin_channels=256)

    self.w2v_decoder = W2VDecoder(inter_channels, inter_channels*2, 5, 1, 8, output_size=1024, p_dropout=0.1, gin_channels=256)    
    
    self.emb_g = StyleEncoder(in_dim=80, hidden_dim=256, out_dim=256)
    self.dp = StochasticDurationPredictor(inter_channels, inter_channels, 3, 0.5, 4, gin_channels=256)
    self.pp = PitchPredictor()
    self.phoneme_classifier = Conv1d(inter_channels, 178, 1, bias=False)

  @torch.no_grad()
  def infer(self, x, x_lengths, y_mel, y_length, noise_scale=1, noise_scale_w=1, length_scale=1):

    y_mask = torch.unsqueeze(commons.sequence_mask(y_length, y_mel.size(2)), 1).to(y_mel.dtype)

    # Speaker embedding from mel (Style Encoder)
    g = self.emb_g(y_mel, y_mask).unsqueeze(-1)
    
    x, m_p, logs_p, x_mask = self.enc_p(x, x_lengths, g=g)


    logw = self.dp(x, x_mask, g=g, reverse=True, noise_scale=noise_scale_w)

      
    w = torch.exp(logw) * x_mask * length_scale
    w_ceil = torch.ceil(w)
    y_lengths = torch.clamp_min(torch.sum(w_ceil, [1, 2]), 1).long()
    y_mask = torch.unsqueeze(commons.sequence_mask(y_lengths, None), 1).to(x_mask.dtype)
    attn_mask = torch.unsqueeze(x_mask, 2) * torch.unsqueeze(y_mask, -1)
    attn = commons.generate_path(w_ceil, attn_mask)

    m_p = torch.matmul(attn.squeeze(1), m_p.transpose(1, 2)).transpose(1, 2) # [b, t', t], [b, t, d] -> [b, d, t']
    logs_p = torch.matmul(attn.squeeze(1), logs_p.transpose(1, 2)).transpose(1, 2) # [b, t', t], [b, t, d] -> [b, d, t']

    z_p = m_p + torch.randn_like(m_p) * torch.exp(logs_p) * noise_scale
    z = self.flow(z_p, y_mask, g=g, reverse=True)

    w2v = self.w2v_decoder(z, y_mask, g=g)
    pitch = self.pp(w2v, g)

    return w2v, pitch
  
  @torch.no_grad()
  def infer_noise_control(self, x, x_lengths, y_mel, y_length, noise_scale=0.333, noise_scale_w=1, length_scale=1, denoise_ratio = 0):

    y_mask = torch.unsqueeze(commons.sequence_mask(y_length, y_mel.size(2)), 1).to(y_mel.dtype)

    # Speaker embedding from mel (Style Encoder)
    g = self.emb_g(y_mel, y_mask).unsqueeze(-1)
    
    g_org, g_denoise = g[:1, :, :], g[1:, :, :]
    g = (1-denoise_ratio)*g_org + denoise_ratio*g_denoise


    x, m_p, logs_p, x_mask = self.enc_p(x, x_lengths, g=g)


    logw = self.dp(x, x_mask, g=g, reverse=True, noise_scale=noise_scale_w)
      
    w = torch.exp(logw) * x_mask * length_scale
    w_ceil = torch.ceil(w)
    y_lengths = torch.clamp_min(torch.sum(w_ceil, [1, 2]), 1).long()
    y_mask = torch.unsqueeze(commons.sequence_mask(y_lengths, None), 1).to(x_mask.dtype)
    attn_mask = torch.unsqueeze(x_mask, 2) * torch.unsqueeze(y_mask, -1)
    attn = commons.generate_path(w_ceil, attn_mask)

    m_p = torch.matmul(attn.squeeze(1), m_p.transpose(1, 2)).transpose(1, 2) # [b, t', t], [b, t, d] -> [b, d, t']
    logs_p = torch.matmul(attn.squeeze(1), logs_p.transpose(1, 2)).transpose(1, 2) # [b, t', t], [b, t, d] -> [b, d, t']

    z_p = m_p + torch.randn_like(m_p) * torch.exp(logs_p) * noise_scale
    z = self.flow(z_p, y_mask, g=g, reverse=True)

    w2v = self.w2v_decoder(z, y_mask, g=g)
    pitch = self.pp(w2v, g)

    return w2v, pitch