File size: 20,586 Bytes
8c20676
 
 
db6d9dc
 
 
 
 
8c20676
 
 
 
 
db6d9dc
8c20676
 
 
 
db6d9dc
 
 
 
8c20676
 
db6d9dc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8c20676
 
 
 
db6d9dc
 
8c20676
db6d9dc
 
 
 
 
 
 
 
8c20676
db6d9dc
 
 
 
 
 
 
 
 
 
 
 
8c20676
 
db6d9dc
 
8c20676
 
 
 
 
 
 
 
 
 
db6d9dc
 
8c20676
 
db6d9dc
 
8c20676
 
 
 
 
 
 
 
 
 
 
db6d9dc
 
8c20676
 
db6d9dc
8c20676
 
 
 
 
 
 
 
 
 
db6d9dc
 
8c20676
 
db6d9dc
8c20676
 
 
 
 
 
 
 
 
 
 
db6d9dc
 
8c20676
 
db6d9dc
 
 
 
 
 
 
8c20676
db6d9dc
 
8c20676
 
 
 
 
 
 
 
 
 
 
 
db6d9dc
 
8c20676
 
db6d9dc
 
 
 
 
 
 
 
 
8c20676
db6d9dc
 
8c20676
 
 
 
 
 
 
 
 
 
 
 
db6d9dc
 
8c20676
 
db6d9dc
 
 
 
 
 
 
8c20676
db6d9dc
 
8c20676
 
 
 
 
 
 
 
 
 
 
 
db6d9dc
 
8c20676
db6d9dc
 
 
 
 
 
8c20676
db6d9dc
8c20676
db6d9dc
8c20676
 
 
db6d9dc
8c20676
db6d9dc
 
 
 
 
 
 
8c20676
db6d9dc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8c20676
db6d9dc
8c20676
 
 
db6d9dc
 
8c20676
 
db6d9dc
8c20676
db6d9dc
8c20676
 
 
db6d9dc
 
8c20676
 
db6d9dc
8c20676
db6d9dc
8c20676
 
 
db6d9dc
 
8c20676
 
db6d9dc
 
 
 
 
 
 
 
 
 
8c20676
 
db6d9dc
 
 
 
8c20676
 
 
 
db6d9dc
8c20676
db6d9dc
 
 
8c20676
db6d9dc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8c20676
db6d9dc
 
8c20676
db6d9dc
8c20676
db6d9dc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8c20676
 
db6d9dc
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
import gradio as gr
import pandas as pd
import logging
from io import BytesIO
import datetime
import zipfile
import tempfile
import os

# Configure logging
logging.basicConfig(
    level=logging.INFO,
    format='%(asctime)s - %(levelname)s - %(message)s',
    handlers=[logging.StreamHandler()]
)
logger = logging.getLogger(__name__)

class ExcelDataProcessor:
    def __init__(self, excel_file=None):
        self.videos_sheet = None
        if excel_file:
            self._initialize_videos_sheet(excel_file)
        logger.info("ExcelDataProcessor initialized")
    
    def _initialize_videos_sheet(self, excel_file):
        """Initialize videos_sheet by combining relevant sheets and normalizing data"""
        try:
            df_dict = pd.read_excel(excel_file, sheet_name=None)
            sheet_dfs = {name: df for name, df in df_dict.items() if '.' in name}
            
            if not sheet_dfs:
                logger.warning("No sheets found with '.' in their names")
                return
            
            # Combine sheets
            combined_df = pd.concat(
                [df.assign(SheetName=name) for name, df in sheet_dfs.items()],
                ignore_index=True
            )
            combined_df = combined_df.dropna(how='all')
            
            # Normalize 'Created At' column
            if 'Created At' in combined_df.columns:
                def parse_date(date_str):
                    if pd.isna(date_str):
                        return pd.NaT
                    try:
                        # Try ISO 8601 format (2025-05-11T19:50:53Z)
                        return pd.to_datetime(date_str, utc=True).date()
                    except:
                        try:
                            # Try DD-MM-YYYY format (18-04-2025)
                            return pd.to_datetime(date_str, format='%d-%m-%Y').date()
                        except:
                            logger.warning(f"Cannot parse date: {date_str}")
                            return pd.NaT
                
                combined_df['Created At'] = combined_df['Created At'].apply(parse_date)
            
            self.videos_sheet = combined_df
            logger.info("Initialized videos_sheet with combined data")
        except Exception as e:
            logger.error(f"Error initializing videos_sheet: {str(e)}")
            self.videos_sheet = None
    
    @staticmethod
    def _extract_number(sheet_name):
        """Extract number from sheet name for sorting"""
        try:
            return int(sheet_name[:sheet_name.find('.')])
        except ValueError:
            logger.warning(f"Could not extract number from sheet name: {sheet_name}")
            return float('inf')
    
    @staticmethod
    def _create_output_buffer(df, base_name):
        """Create Excel file in memory"""
        output = BytesIO()
        with pd.ExcelWriter(output, engine='xlsxwriter') as writer:
            df.to_excel(writer, sheet_name='Results')
        output.seek(0)
        return output, f"{base_name}.xlsx"
    
    def _apply_date_filter(self, df, target_date, by_ref, use_filter):
        """Apply date filter based on operation type and filter choice"""
        df_filtered = df.copy()
        
        if not use_filter:
            return df_filtered
            
        if by_ref:
            return df_filtered[df_filtered['Created At'] < target_date].copy()
        return df_filtered[df_filtered['Created At'] >= target_date].copy()

    def count_daily_registers_by_source_name(self, df, target_date, use_filter):
        """Count daily registers by source name"""
        logger.info("Starting count_daily_registers_by_source_name")
        df_filtered = self._apply_date_filter(df, target_date, False, use_filter)
        df_filtered['Created At'] = pd.to_datetime(df_filtered['Created At']).dt.date
        pivot_table = pd.pivot_table(
            df_filtered,
            index='Source Name',
            columns='Created At',
            values='User ID',
            aggfunc='count',
            fill_value=0
        )
        pivot_table.loc['Total'] = pivot_table.sum()
        return pivot_table

    def count_daily_registers_by_ref(self, df, target_date, use_filter):
        """Count daily registers by reference"""
        logger.info("Starting count_daily_registers_by_ref")
        df_filtered = self._apply_date_filter(df, target_date, True, use_filter)
        df_filtered['Created At'] = pd.to_datetime(df_filtered['Created At']).dt.date
        df_filtered.loc[(df_filtered['Source Name'] == 'direct') & (df_filtered['Ref By'].isna()), 'Ref By'] = 'direct'
        pivot_table = pd.pivot_table(
            df_filtered,
            index='Ref By',
            columns='Created At',
            values='User ID',
            aggfunc='count',
            fill_value=0
        )
        pivot_table.loc['Total'] = pivot_table.sum()
        return pivot_table

    def count_users_by_source_name(self, df, target_date, use_filter):
        """Count unique users by source name"""
        logger.info("Starting count_users_by_source_name")
        df_filtered = self._apply_date_filter(df, target_date, False, use_filter)
        df_filtered = df_filtered.drop_duplicates(subset=['User ID'], keep='first')
        df_filtered['Created At'] = pd.to_datetime(df_filtered['Created At']).dt.date
        pivot_table = pd.pivot_table(
            df_filtered,
            index='Source Name',
            values='User ID',
            aggfunc='count',
            fill_value=0
        )
        return pivot_table

    def count_users_by_ref(self, df, target_date, use_filter):
        """Count unique users by reference"""
        logger.info("Starting count_users_by_ref")
        df_filtered = self._apply_date_filter(df, target_date, True, use_filter)
        df_filtered = df_filtered.drop_duplicates(subset=['User ID'], keep='first')
        df_filtered['Created At'] = pd.to_datetime(df_filtered['Created At']).dt.date
        df_filtered.loc[(df_filtered['Source Name'] == 'direct') & (df_filtered['Ref By'].isna()), 'Ref By'] = 'direct'
        pivot_table = pd.pivot_table(
            df_filtered,
            index='Ref By',
            values='User ID',
            aggfunc='count',
            fill_value=0
        )
        return pivot_table

    def count_users_each_sheet_by_source_name(self, target_date, use_filter):
        """Count users in each sheet by source name"""
        logger.info("Starting count_users_each_sheet_by_source_name")
        if self.videos_sheet is None:
            logger.warning("No videos_sheet data available")
            return "No valid sheet data available", None
        
        combined_df_filtered = self.videos_sheet.dropna(subset=['Source Name']).copy()
        combined_df_filtered = self._apply_date_filter(combined_df_filtered, target_date, False, use_filter)
        
        if not {'Source Name', 'User ID', 'SheetName'}.issubset(combined_df_filtered.columns):
            return "Required columns missing", None

        pivot_table = pd.pivot_table(
            combined_df_filtered,
            index='Source Name',
            columns='SheetName',
            values='User ID',
            aggfunc='count',
            fill_value=0
        )
        sorted_columns = sorted(pivot_table.columns, key=self._extract_number)
        pivot_table = pivot_table[sorted_columns]
        pivot_table.loc['Total'] = pivot_table.sum()
        return "Success", pivot_table

    def count_users_each_sheet_by_ref(self, target_date, use_filter):
        """Count users in each sheet by reference"""
        logger.info("Starting count_users_each_sheet_by_ref")
        if self.videos_sheet is None:
            logger.warning("No videos_sheet data available")
            return "No valid sheet data available", None
        
        combined_df_filtered = self.videos_sheet.copy()
        combined_df_filtered = self._apply_date_filter(combined_df_filtered, target_date, True, use_filter)
        combined_df_filtered.loc[(combined_df_filtered['Source Name'] == 'direct') & 
                              (combined_df_filtered['Ref By'].isna()), 'Ref By'] = 'direct'
        
        if not {'Ref By', 'User ID', 'SheetName'}.issubset(combined_df_filtered.columns):
            return "Required columns missing", None

        pivot_table = pd.pivot_table(
            combined_df_filtered,
            index='Ref By',
            columns='SheetName',
            values='User ID',
            aggfunc='count',
            fill_value=0
        )
        sorted_columns = sorted(pivot_table.columns, key=self._extract_number)
        pivot_table = pivot_table[sorted_columns]
        pivot_table.loc['Total'] = pivot_table.sum()
        return "Success", pivot_table

    def count_users_each_sheet_by_date(self, target_date, use_filter):
        """Count users in each sheet by date"""
        logger.info("Starting count_users_each_sheet_by_date")
        if self.videos_sheet is None:
            logger.warning("No videos_sheet data available")
            return "No valid sheet data available", None
        
        combined_df_filtered = self.videos_sheet[self.videos_sheet['Created At'].notna()].copy()
        combined_df_filtered = self._apply_date_filter(combined_df_filtered, target_date, False, use_filter)
        
        if not {'Created At', 'User ID', 'SheetName'}.issubset(combined_df_filtered.columns):
            return "Required columns missing", None

        pivot_table = pd.pivot_table(
            combined_df_filtered,
            index='Created At',
            columns='SheetName',
            values='User ID',
            aggfunc='count',
            fill_value=0
        )
        sorted_columns = sorted(pivot_table.columns, key=self._extract_number)
        pivot_table = pivot_table[sorted_columns]
        pivot_table.loc['Total'] = pivot_table.sum()
        return "Success", pivot_table

    def process_file(self, excel_file, operations, target_date, use_date_filter):
        """Process file with selected operations"""
        logger.info(f"Processing file with operations: {operations}")
        
        # Initialize videos_sheet if not already done
        if self.videos_sheet is None:
            self._initialize_videos_sheet(excel_file)
            
        results = {}
        output_files = []
        result_preview = None

        if not excel_file:
            logger.warning("No file uploaded")
            return "Please upload an Excel file", None, None

        try:
            # Process single-sheet operations
            single_sheet_ops = [
                "count_daily_registers_by_source_name",
                "count_daily_registers_by_ref",
                "count_users_by_source_name",
                "count_users_by_ref"
            ]
            
            if any(op in operations for op in single_sheet_ops):
                df = pd.read_excel(excel_file, sheet_name="User Register")
                
                # Normalize 'Created At' for User Register sheet
                if 'Created At' in df.columns:
                    def parse_date(date_str):
                        if pd.isna(date_str):
                            return pd.NaT
                        try:
                            # Try ISO 8601 format (2025-05-11T19:50:53Z)
                            return pd.to_datetime(date_str, utc=True).date()
                        except:
                            try:
                                # Try DD-MM-YYYY format (18-04-2025)
                                return pd.to_datetime(date_str, format='%d-%m-%Y').date()
                            except:
                                logger.warning(f"Cannot parse date: {date_str}")
                                return pd.NaT
                    
                    df['Created At'] = df['Created At'].apply(parse_date)
                
                if "count_daily_registers_by_source_name" in operations:
                    pivot = self.count_daily_registers_by_source_name(df, target_date, use_date_filter)
                    results["Daily Registers by Source Name"] = pivot
                    buffer, filename = self._create_output_buffer(pivot, "daily_registers_source")
                    output_files.append((buffer, filename))
                    if result_preview is None:
                        result_preview = pivot

                if "count_daily_registers_by_ref" in operations:
                    pivot = self.count_daily_registers_by_ref(df, target_date, use_date_filter)
                    results["Daily Registers by Ref"] = pivot
                    buffer, filename = self._create_output_buffer(pivot, "daily_registers_ref")
                    output_files.append((buffer, filename))
                    if result_preview is None:
                        result_preview = pivot

                if "count_users_by_source_name" in operations:
                    pivot = self.count_users_by_source_name(df, target_date, use_date_filter)
                    results["Users by Source Name"] = pivot
                    buffer, filename = self._create_output_buffer(pivot, "users_source")
                    output_files.append((buffer, filename))
                    if result_preview is None:
                        result_preview = pivot

                if "count_users_by_ref" in operations:
                    pivot = self.count_users_by_ref(df, target_date, use_date_filter)
                    results["Users by Ref"] = pivot
                    buffer, filename = self._create_output_buffer(pivot, "users_ref")
                    output_files.append((buffer, filename))
                    if result_preview is None:
                        result_preview = pivot

            # Process multi-sheet operations
            if "count_users_each_sheet_by_source_name" in operations:
                status, pivot = self.count_users_each_sheet_by_source_name(target_date, use_date_filter)
                if status != "Success":
                    return status, None, None
                results["Users Each Sheet by Source Name"] = pivot
                buffer, filename = self._create_output_buffer(pivot, "users_sheet_source")
                output_files.append((buffer, filename))
                if result_preview is None:
                    result_preview = pivot

            if "count_users_each_sheet_by_ref" in operations:
                status, pivot = self.count_users_each_sheet_by_ref(target_date, use_date_filter)
                if status != "Success":
                    return status, None, None
                results["Users Each Sheet by Ref"] = pivot
                buffer, filename = self._create_output_buffer(pivot, "users_sheet_ref")
                output_files.append((buffer, filename))
                if result_preview is None:
                    result_preview = pivot

            if "count_users_each_sheet_by_date" in operations:
                status, pivot = self.count_users_each_sheet_by_date(target_date, use_date_filter)
                if status != "Success":
                    return status, None, None
                results["Users Each Sheet by Date"] = pivot
                buffer, filename = self._create_output_buffer(pivot, "users_sheet_date")
                output_files.append((buffer, filename))
                if result_preview is None:
                    result_preview = pivot

            # Create ZIP file
            if output_files:
                # Use temporary file for ZIP
                with tempfile.NamedTemporaryFile(delete=False, suffix='.zip') as tmp_file:
                    with zipfile.ZipFile(tmp_file, 'w') as zip_file:
                        for buffer, filename in output_files:
                            zip_file.writestr(filename, buffer.getvalue())
                    tmp_file_path = tmp_file.name
                
                if result_preview is not None and result_preview.size > 10000:
                    result_preview = result_preview.head(100)
                    
                return "Processing completed successfully!", result_preview, tmp_file_path
            return "No operations performed", None, None

        except Exception as e:
            logger.error(f"Error during file processing: {str(e)}", exc_info=True)
            return f"Error: {str(e)}", None, None

    # ... (other methods remain unchanged)

def create_gradio_interface():
    """Create and configure the Gradio interface"""
    processor = ExcelDataProcessor()
    
    with gr.Blocks(title="Excel Data Processor") as app:
        gr.Markdown("# Excel Data Processing Tool")
        gr.Markdown("Upload an Excel file, select operations, and optionally filter by date.")
        
        with gr.Row():
            with gr.Column(scale=1):
                file_input = gr.File(label="Upload Excel File")
                
                with gr.Group():
                    gr.Markdown("### Date Filter")
                    use_date_filter = gr.Checkbox(label="Apply Date Filter", value=False)
                    target_date = gr.Textbox(
                        label="Target Date (YYYY-MM-DD)",
                        value="2025-04-14",
                        placeholder="YYYY-MM-DD"
                    )
                
                operations = gr.CheckboxGroup(
                    choices=[
                        "count_daily_registers_by_source_name",
                        "count_daily_registers_by_ref",
                        "count_users_by_source_name",
                        "count_users_by_ref",
                        "count_users_each_sheet_by_source_name",
                        "count_users_each_sheet_by_ref",
                        "count_users_each_sheet_by_date"
                    ],
                    label="Select Operations",
                    value=["count_daily_registers_by_source_name"]
                )
                
                process_btn = gr.Button("Process Excel File", variant="primary")
            
            with gr.Column(scale=2):
                status_output = gr.Textbox(label="Status")
                result_output = gr.Dataframe(label="Preview Results (Limited to avoid UI freezing)")
                download_btn = gr.File(label="Download Results (ZIP)")

        def validate_and_process(file, ops, date_str, use_filter):
            """Validate inputs and process file"""
            logger.info(f"Processing started with operations: {ops}")
            
            try:
                target_date = datetime.datetime.strptime(date_str, '%Y-%m-%d').date()
            except ValueError:
                return "Invalid date format. Use YYYY-MM-DD", None, None
                
            # Re-initialize processor with new file
            processor.__init__(excel_file=file)
            return processor.process_file(file, ops, target_date, use_filter)

        process_btn.click(
            fn=lambda file, ops, date, filter: ("Processing... Please wait.", None, None),
            inputs=[file_input, operations, target_date, use_date_filter],
            outputs=[status_output, result_output, download_btn],
            queue=False
        ).then(
            fn=validate_and_process,
            inputs=[file_input, operations, target_date, use_date_filter],
            outputs=[status_output, result_output, download_btn]
        )

        gr.Markdown("""
        ## Instructions
        1. Upload your Excel file
        2. Optionally enable date filtering and specify a target date
        3. Select desired operations
        4. Click "Process Excel File"
        5. View preview results and download the ZIP file containing all outputs

        ## Date Filter
        - When enabled, operations by reference use dates < target date
        - Operations by source name use dates >= target date
        - When disabled, all dates are included

        ## Operations
        - count_daily_registers_by_source_name: Daily registrations by source
        - count_daily_registers_by_ref: Daily registrations by referral
        - count_users_by_source_name: Unique users by source
        - count_users_by_ref: Unique users by referral
        - count_users_each_sheet_by_source_name: Users per sheet by source
        - count_users_each_sheet_by_ref: Users per sheet by referral
        - count_users_each_sheet_by_date: Users per sheet by date
        """)

    return app

if __name__ == "__main__":
    app = create_gradio_interface()
    app.launch()