Spaces:
Running
Running
File size: 19,895 Bytes
8c20676 629c533 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 |
import gradio as gr
import pandas as pd
import os
import zipfile
from io import BytesIO
import time
import logging
import datetime # Add this import
# Configure logging
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(levelname)s - %(message)s',
handlers=[
logging.FileHandler('statistical_processor.log'),
logging.StreamHandler()
]
)
logger = logging.getLogger(__name__)
# Create output directory if it doesn't exist
os.makedirs("output", exist_ok=True)
logger.info("Output directory checked/created")
class ExcelDataProcessor:
def __init__(self):
self.output_files = []
logger.info("ExcelDataProcessor initialized")
def _extract_number(self, sheet_name):
"""Extract number from sheet name for sorting"""
try:
return int(sheet_name[:sheet_name.find('.')])
except ValueError:
logger.info(f"Error processing {sheet_name}: '>' not supported between instances of 'datetime.date' and 'str'")
return float('inf') # Send sheets without numbers to the end
def _create_unique_filename(self, base_name):
"""Create a unique filename with timestamp"""
timestamp = int(time.time())
return f"{base_name}_{timestamp}.xlsx"
def count_daily_registers_by_source_name(self, df):
"""Count daily registers by source name"""
logger.info("Starting count_daily_registers_by_source_name")
df_filtered = df.copy()
df_filtered.loc[:, 'Created At'] = pd.to_datetime(df_filtered['Created At']).dt.date
target_date = datetime.date(2025, 4, 14)
df_filtered = df_filtered[df_filtered['Created At'] > target_date].copy()
pivot_table = pd.pivot_table(
df_filtered,
index='Source Name',
columns='Created At',
values='User ID',
aggfunc='count',
fill_value=0
)
pivot_table.loc['Total'] = pivot_table.sum()
output_path = self._create_unique_filename("count_daily_registers_by_source_name")
full_path = os.path.join("output", output_path)
pivot_table.to_excel(full_path)
self.output_files.append(full_path)
logger.info(f"Saved count_daily_registers_by_source_name to {full_path}")
return pivot_table
def count_daily_registers_by_ref(self, df):
"""Count daily registers by reference"""
logger.info("Starting count_daily_registers_by_ref")
df_filtered = df.copy()
df_filtered.loc[:, 'Created At'] = pd.to_datetime(df_filtered['Created At']).dt.date
target_date = datetime.date(2025, 4, 15)
df_filtered = df_filtered[df_filtered['Created At'] < target_date].copy()
df_filtered.loc[(df_filtered['Source Name'] == 'direct') & (df_filtered['Ref By'].isna()), 'Ref By'] = 'direct'
pivot_table = pd.pivot_table(
df_filtered,
index='Ref By',
columns='Created At',
values='User ID',
aggfunc='count',
fill_value=0
)
pivot_table.loc['Total'] = pivot_table.sum()
output_path = self._create_unique_filename("count_daily_registers_by_ref")
full_path = os.path.join("output", output_path)
pivot_table.to_excel(full_path)
self.output_files.append(full_path)
logger.info(f"Saved count_daily_registers_by_ref to {full_path}")
return pivot_table
def count_users_by_source_name(self, df):
"""Count unique users by source name"""
logger.info("Starting count_users_by_source_name")
df_filtered = df.copy()
df_filtered = df_filtered.drop_duplicates(subset=['User ID'], keep='first')
target_date = datetime.date(2025, 4, 14)
df_filtered['Created At'] = pd.to_datetime(df_filtered['Created At']).dt.date
df_filtered = df_filtered[df_filtered['Created At'] > target_date].copy()
pivot_table = pd.pivot_table(
df_filtered,
index='Source Name',
values='User ID',
aggfunc='count',
fill_value=0
)
output_path = self._create_unique_filename("count_users_by_source_name")
full_path = os.path.join("output", output_path)
pivot_table.to_excel(full_path)
self.output_files.append(full_path)
logger.info(f"Saved count_users_by_source_name to {full_path}")
return pivot_table
def count_users_by_ref(self, df):
"""Count unique users by reference"""
logger.info("Starting count_users_by_ref")
df_filtered = df.copy()
df_filtered = df_filtered.drop_duplicates(subset=['User ID'], keep='first')
target_date = datetime.date(2025, 4, 15)
df_filtered['Created At'] = pd.to_datetime(df_filtered['Created At']).dt.date
df_filtered = df_filtered[df_filtered['Created At'] < target_date].copy()
df_filtered.loc[(df_filtered['Source Name'] == 'direct') & (df_filtered['Ref By'].isna()), 'Ref By'] = 'direct'
pivot_table = pd.pivot_table(
df_filtered,
index='Ref By',
values='User ID',
aggfunc='count',
fill_value=0
)
output_path = self._create_unique_filename("count_users_by_ref")
full_path = os.path.join("output", output_path)
pivot_table.to_excel(full_path)
self.output_files.append(full_path)
logger.info(f"Saved count_users_by_ref to {full_path}")
return pivot_table
def count_users_each_sheet_by_source_name(self, excel_file):
"""Count users in each sheet by source name"""
logger.info("Starting count_users_each_sheet_by_source_name")
df_dict = pd.read_excel(excel_file, sheet_name=None)
sheet_dfs = {sheet_name: df for sheet_name, df in df_dict.items() if '.' in sheet_name}
if not sheet_dfs:
logger.warning("No sheets found with '.' in their names")
return "No sheets found with '.' in their names", None
combined_df = pd.concat(
[df.assign(SheetName=sheet_name) for sheet_name, df in sheet_dfs.items()],
axis=0,
ignore_index=True
)
combined_df = combined_df.dropna(how='all').copy()
combined_df_filtered = combined_df.dropna(subset=['Source Name']).copy()
combined_df_filtered['Created At'] = pd.to_datetime(combined_df_filtered['Created At']).dt.date
target_date = datetime.date(2025, 4, 14)
combined_df_filtered = combined_df_filtered[combined_df_filtered['Created At'] > target_date].copy()
if not {'Source Name', 'User ID', 'SheetName'}.issubset(combined_df_filtered.columns):
return "Required columns 'Source Name', 'User ID', or 'SheetName' not found", None
pivot_table = pd.pivot_table(
combined_df_filtered,
index='Source Name',
columns='SheetName',
values='User ID',
aggfunc='count',
fill_value=0
)
sorted_columns = sorted(pivot_table.columns, key=self._extract_number)
pivot_table = pivot_table[sorted_columns]
pivot_table.loc['Total'] = pivot_table.sum()
output_path = self._create_unique_filename("count_users_each_sheet_by_source_name")
full_path = os.path.join("output", output_path)
pivot_table.to_excel(full_path)
self.output_files.append(full_path)
logger.info(f"Saved count_users_each_sheet_by_source_name to {full_path}")
return "Success", pivot_table
def count_users_each_sheet_by_ref(self, excel_file):
"""Count users in each sheet by reference"""
logger.info("Starting count_users_each_sheet_by_ref")
df_dict = pd.read_excel(excel_file, sheet_name=None)
sheet_dfs = {sheet_name: df for sheet_name, df in df_dict.items() if '.' in sheet_name}
if not sheet_dfs:
logger.warning("No sheets found with '.' in their names")
return "No sheets found with '.' in their names", None
combined_df = pd.concat(
[df.assign(SheetName=sheet_name) for sheet_name, df in sheet_dfs.items()],
axis=0,
ignore_index=True
)
combined_df = combined_df.dropna(how='all').copy()
combined_df_filtered = combined_df.copy()
combined_df_filtered['Created At'] = pd.to_datetime(combined_df_filtered['Created At']).dt.date
target_date = datetime.date(2025, 4, 15)
combined_df_filtered = combined_df_filtered[combined_df_filtered['Created At'] < target_date].copy()
combined_df_filtered.loc[(combined_df_filtered['Source Name'] == 'direct') & (combined_df_filtered['Ref By'].isna()), 'Ref By'] = 'direct'
if not {'Ref By', 'User ID', 'SheetName'}.issubset(combined_df_filtered.columns):
return "Required columns 'Ref By', 'User ID', or 'SheetName' not found", None
pivot_table = pd.pivot_table(
combined_df_filtered,
index='Ref By',
columns='SheetName',
values='User ID',
aggfunc='count',
fill_value=0
)
sorted_columns = sorted(pivot_table.columns, key=self._extract_number)
pivot_table = pivot_table[sorted_columns]
pivot_table.loc['Total'] = pivot_table.sum()
output_path = self._create_unique_filename("count_users_each_sheet_by_ref")
full_path = os.path.join("output", output_path)
pivot_table.to_excel(full_path)
self.output_files.append(full_path)
logger.info(f"Saved count_users_each_sheet_by_ref to {full_path}")
return "Success", pivot_table
def count_users_each_sheet_by_date(self, excel_file):
"""Count users in each sheet by date"""
logger.info("Starting count_users_each_sheet_by_date")
df_dict = pd.read_excel(excel_file, sheet_name=None)
sheet_dfs = {sheet_name: df for sheet_name, df in df_dict.items() if '.' in sheet_name}
if not sheet_dfs:
logger.warning("No sheets found with '.' in their names")
return "No sheets found with '.' in their names", None
combined_df = pd.concat(
[df.assign(SheetName=sheet_name) for sheet_name, df in sheet_dfs.items()],
axis=0,
ignore_index=True
)
combined_df = combined_df.dropna(how='all').copy()
combined_df_filtered = combined_df[combined_df['Created At'].notna()].copy()
combined_df_filtered.loc[:, 'Created At'] = pd.to_datetime(combined_df_filtered['Created At']).dt.date
if not {'Created At', 'User ID', 'SheetName'}.issubset(combined_df_filtered.columns):
return "Required columns 'Created At', 'User ID', or 'SheetName' not found", None
pivot_table = pd.pivot_table(
combined_df_filtered,
index='Created At',
columns='SheetName',
values='User ID',
aggfunc='count',
fill_value=0
)
sorted_columns = sorted(pivot_table.columns, key=self._extract_number)
pivot_table = pivot_table[sorted_columns]
pivot_table.loc['Total'] = pivot_table.sum()
output_path = self._create_unique_filename("count_users_each_sheet_by_date")
full_path = os.path.join("output", output_path)
pivot_table.to_excel(full_path)
self.output_files.append(full_path)
logger.info(f"Saved count_users_each_sheet_by_date to {full_path}")
return "Success", pivot_table
def process_file(self, excel_file, operations):
"""Process file with selected operations"""
logger.info(f"Starting file processing with operations: {operations}")
self.output_files = [] # Reset output files
results = {}
result_preview = None
if not excel_file:
logger.warning("No file uploaded")
return "Please upload an Excel file", None, None
try:
if any(op in operations for op in ["count_daily_registers_by_source_name",
"count_daily_registers_by_ref",
"count_users_by_source_name",
"count_users_by_ref"]):
try:
df = pd.read_excel(excel_file, sheet_name="User Register")
if "count_daily_registers_by_source_name" in operations:
results["Daily Registers by Source Name"] = self.count_daily_registers_by_source_name(df)
if result_preview is None:
result_preview = results["Daily Registers by Source Name"]
if "count_daily_registers_by_ref" in operations:
results["Daily Registers by Ref"] = self.count_daily_registers_by_ref(df)
if result_preview is None:
result_preview = results["Daily Registers by Ref"]
if "count_users_by_source_name" in operations:
results["Users by Source Name"] = self.count_users_by_source_name(df)
if result_preview is None:
result_preview = results["Users by Source Name"]
if "count_users_by_ref" in operations:
results["Users by Ref"] = self.count_users_by_ref(df)
if result_preview is None:
result_preview = results["Users by Ref"]
except Exception as e:
logger.error(f"Error processing User Register sheet: {str(e)}", exc_info=True)
return f"Error processing User Register sheet: {str(e)}", None, None
if "count_users_each_sheet_by_source_name" in operations:
status, pivot = self.count_users_each_sheet_by_source_name(excel_file)
if status != "Success":
return status, None, None
results["Users Each Sheet by Source Name"] = pivot
if result_preview is None:
result_preview = pivot
if "count_users_each_sheet_by_ref" in operations:
status, pivot = self.count_users_each_sheet_by_ref(excel_file)
if status != "Success":
return status, None, None
results["Users Each Sheet by Ref"] = pivot
if result_preview is None:
result_preview = pivot
if "count_users_each_sheet_by_date" in operations:
status, pivot = self.count_users_each_sheet_by_date(excel_file)
if status != "Success":
return status, None, None
results["Users Each Sheet by Date"] = pivot
if result_preview is None:
result_preview = pivot
if self.output_files:
logger.info("Creating ZIP file with all outputs")
zip_buffer = BytesIO()
with zipfile.ZipFile(zip_buffer, 'w') as zip_file:
for file_path in self.output_files:
if os.path.exists(file_path):
zip_file.write(file_path, os.path.basename(file_path))
zip_buffer.seek(0)
zip_path = os.path.join("output", "excel_reports.zip")
with open(zip_path, "wb") as f:
f.write(zip_buffer.getvalue())
logger.info(f"ZIP file created at {zip_path}")
if result_preview is not None and result_preview.size > 10000:
result_preview = result_preview.head(100)
return "Processing completed successfully!", result_preview, zip_path
else:
logger.warning("No operations were performed")
return "No operations were performed.", None, None
except Exception as e:
logger.error(f"Error during file processing: {str(e)}", exc_info=True)
return f"Error: {str(e)}", None, None
# Create the processor
processor = ExcelDataProcessor()
# Define the Gradio interface
with gr.Blocks(title="Excel Data Processor") as app:
gr.Markdown("# Excel Data Processing Tool")
gr.Markdown("Upload your Excel file and select the operations to perform.")
with gr.Row():
with gr.Column(scale=1):
file_input = gr.File(label="Upload Excel File")
operations = gr.CheckboxGroup(
choices=[
"count_daily_registers_by_source_name",
"count_daily_registers_by_ref",
"count_users_by_source_name",
"count_users_by_ref",
"count_users_each_sheet_by_source_name",
"count_users_each_sheet_by_ref",
"count_users_each_sheet_by_date"
],
label="Select Operations",
value=["count_daily_registers_by_source_name"]
)
process_btn = gr.Button("Process Excel File", variant="primary")
with gr.Column(scale=2):
status_output = gr.Textbox(label="Status")
with gr.Row():
result_output = gr.Dataframe(label="Preview Results (Limited to avoid UI freezing)")
download_btn = gr.File(label="Download Results (ZIP)")
def show_processing(file, ops):
logger.info(f"Processing started with operations: {ops}")
return "Processing... This may take a moment. Files are being saved even if UI appears frozen.", None, None
def process_excel_file(file, ops):
logger.info(f"Processing excel file with operations: {ops}")
status, preview, zip_file = processor.process_file(file, ops)
logger.info(f"Processing completed with status: {status}")
return status, preview, zip_file
process_btn.click(
fn=show_processing,
inputs=[file_input, operations],
outputs=[status_output, result_output, download_btn],
queue=False
).then(
fn=process_excel_file,
inputs=[file_input, operations],
outputs=[status_output, result_output, download_btn]
)
gr.Markdown("""
## Instructions
1. Upload your Excel file using the file uploader
2. Select one or more operations to perform
3. Click "Process Excel File" button
4. View the results in the preview table (limited to prevent UI freezing)
5. Download the ZIP file containing all generated Excel files
## Operations Description
- **count_daily_registers_by_source_name**: Count daily registrations by source name (excluding 'direct')
- **count_daily_registers_by_ref**: Count daily registrations by referral (for 'direct' source only)
- **count_users_by_source_name**: Count unique users by source name (excluding 'direct')
- **count_users_by_ref**: Count unique users by referral (for 'direct' source only)
- **count_users_each_sheet_by_source_name**: Count users in each sheet by source name
- **count_users_each_sheet_by_ref**: Count users in each sheet by referral
- **count_users_each_sheet_by_date**: Count users in each sheet by date
## Notes
- If the UI appears to freeze, don't worry! The processing is still happening in the background.
- All output files are saved in the 'output' folder even if the UI is unresponsive.
- For very large Excel files, only a preview of the results will be shown to prevent UI freezing.
""")
# Launch the app
if __name__ == "__main__":
app.launch(share=True) |