Spaces:
Sleeping
Sleeping
File size: 20,586 Bytes
8c20676 db6d9dc 8c20676 db6d9dc 8c20676 db6d9dc 8c20676 db6d9dc 8c20676 db6d9dc 8c20676 db6d9dc 8c20676 db6d9dc 8c20676 db6d9dc 8c20676 db6d9dc 8c20676 db6d9dc 8c20676 db6d9dc 8c20676 db6d9dc 8c20676 db6d9dc 8c20676 db6d9dc 8c20676 db6d9dc 8c20676 db6d9dc 8c20676 db6d9dc 8c20676 db6d9dc 8c20676 db6d9dc 8c20676 db6d9dc 8c20676 db6d9dc 8c20676 db6d9dc 8c20676 db6d9dc 8c20676 db6d9dc 8c20676 db6d9dc 8c20676 db6d9dc 8c20676 db6d9dc 8c20676 db6d9dc 8c20676 db6d9dc 8c20676 db6d9dc 8c20676 db6d9dc 8c20676 db6d9dc 8c20676 db6d9dc 8c20676 db6d9dc 8c20676 db6d9dc 8c20676 db6d9dc 8c20676 db6d9dc 8c20676 db6d9dc 8c20676 db6d9dc 8c20676 db6d9dc 8c20676 db6d9dc 8c20676 db6d9dc 8c20676 db6d9dc 8c20676 db6d9dc 8c20676 db6d9dc 8c20676 db6d9dc 8c20676 db6d9dc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 |
import gradio as gr
import pandas as pd
import logging
from io import BytesIO
import datetime
import zipfile
import tempfile
import os
# Configure logging
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(levelname)s - %(message)s',
handlers=[logging.StreamHandler()]
)
logger = logging.getLogger(__name__)
class ExcelDataProcessor:
def __init__(self, excel_file=None):
self.videos_sheet = None
if excel_file:
self._initialize_videos_sheet(excel_file)
logger.info("ExcelDataProcessor initialized")
def _initialize_videos_sheet(self, excel_file):
"""Initialize videos_sheet by combining relevant sheets and normalizing data"""
try:
df_dict = pd.read_excel(excel_file, sheet_name=None)
sheet_dfs = {name: df for name, df in df_dict.items() if '.' in name}
if not sheet_dfs:
logger.warning("No sheets found with '.' in their names")
return
# Combine sheets
combined_df = pd.concat(
[df.assign(SheetName=name) for name, df in sheet_dfs.items()],
ignore_index=True
)
combined_df = combined_df.dropna(how='all')
# Normalize 'Created At' column
if 'Created At' in combined_df.columns:
def parse_date(date_str):
if pd.isna(date_str):
return pd.NaT
try:
# Try ISO 8601 format (2025-05-11T19:50:53Z)
return pd.to_datetime(date_str, utc=True).date()
except:
try:
# Try DD-MM-YYYY format (18-04-2025)
return pd.to_datetime(date_str, format='%d-%m-%Y').date()
except:
logger.warning(f"Cannot parse date: {date_str}")
return pd.NaT
combined_df['Created At'] = combined_df['Created At'].apply(parse_date)
self.videos_sheet = combined_df
logger.info("Initialized videos_sheet with combined data")
except Exception as e:
logger.error(f"Error initializing videos_sheet: {str(e)}")
self.videos_sheet = None
@staticmethod
def _extract_number(sheet_name):
"""Extract number from sheet name for sorting"""
try:
return int(sheet_name[:sheet_name.find('.')])
except ValueError:
logger.warning(f"Could not extract number from sheet name: {sheet_name}")
return float('inf')
@staticmethod
def _create_output_buffer(df, base_name):
"""Create Excel file in memory"""
output = BytesIO()
with pd.ExcelWriter(output, engine='xlsxwriter') as writer:
df.to_excel(writer, sheet_name='Results')
output.seek(0)
return output, f"{base_name}.xlsx"
def _apply_date_filter(self, df, target_date, by_ref, use_filter):
"""Apply date filter based on operation type and filter choice"""
df_filtered = df.copy()
if not use_filter:
return df_filtered
if by_ref:
return df_filtered[df_filtered['Created At'] < target_date].copy()
return df_filtered[df_filtered['Created At'] >= target_date].copy()
def count_daily_registers_by_source_name(self, df, target_date, use_filter):
"""Count daily registers by source name"""
logger.info("Starting count_daily_registers_by_source_name")
df_filtered = self._apply_date_filter(df, target_date, False, use_filter)
df_filtered['Created At'] = pd.to_datetime(df_filtered['Created At']).dt.date
pivot_table = pd.pivot_table(
df_filtered,
index='Source Name',
columns='Created At',
values='User ID',
aggfunc='count',
fill_value=0
)
pivot_table.loc['Total'] = pivot_table.sum()
return pivot_table
def count_daily_registers_by_ref(self, df, target_date, use_filter):
"""Count daily registers by reference"""
logger.info("Starting count_daily_registers_by_ref")
df_filtered = self._apply_date_filter(df, target_date, True, use_filter)
df_filtered['Created At'] = pd.to_datetime(df_filtered['Created At']).dt.date
df_filtered.loc[(df_filtered['Source Name'] == 'direct') & (df_filtered['Ref By'].isna()), 'Ref By'] = 'direct'
pivot_table = pd.pivot_table(
df_filtered,
index='Ref By',
columns='Created At',
values='User ID',
aggfunc='count',
fill_value=0
)
pivot_table.loc['Total'] = pivot_table.sum()
return pivot_table
def count_users_by_source_name(self, df, target_date, use_filter):
"""Count unique users by source name"""
logger.info("Starting count_users_by_source_name")
df_filtered = self._apply_date_filter(df, target_date, False, use_filter)
df_filtered = df_filtered.drop_duplicates(subset=['User ID'], keep='first')
df_filtered['Created At'] = pd.to_datetime(df_filtered['Created At']).dt.date
pivot_table = pd.pivot_table(
df_filtered,
index='Source Name',
values='User ID',
aggfunc='count',
fill_value=0
)
return pivot_table
def count_users_by_ref(self, df, target_date, use_filter):
"""Count unique users by reference"""
logger.info("Starting count_users_by_ref")
df_filtered = self._apply_date_filter(df, target_date, True, use_filter)
df_filtered = df_filtered.drop_duplicates(subset=['User ID'], keep='first')
df_filtered['Created At'] = pd.to_datetime(df_filtered['Created At']).dt.date
df_filtered.loc[(df_filtered['Source Name'] == 'direct') & (df_filtered['Ref By'].isna()), 'Ref By'] = 'direct'
pivot_table = pd.pivot_table(
df_filtered,
index='Ref By',
values='User ID',
aggfunc='count',
fill_value=0
)
return pivot_table
def count_users_each_sheet_by_source_name(self, target_date, use_filter):
"""Count users in each sheet by source name"""
logger.info("Starting count_users_each_sheet_by_source_name")
if self.videos_sheet is None:
logger.warning("No videos_sheet data available")
return "No valid sheet data available", None
combined_df_filtered = self.videos_sheet.dropna(subset=['Source Name']).copy()
combined_df_filtered = self._apply_date_filter(combined_df_filtered, target_date, False, use_filter)
if not {'Source Name', 'User ID', 'SheetName'}.issubset(combined_df_filtered.columns):
return "Required columns missing", None
pivot_table = pd.pivot_table(
combined_df_filtered,
index='Source Name',
columns='SheetName',
values='User ID',
aggfunc='count',
fill_value=0
)
sorted_columns = sorted(pivot_table.columns, key=self._extract_number)
pivot_table = pivot_table[sorted_columns]
pivot_table.loc['Total'] = pivot_table.sum()
return "Success", pivot_table
def count_users_each_sheet_by_ref(self, target_date, use_filter):
"""Count users in each sheet by reference"""
logger.info("Starting count_users_each_sheet_by_ref")
if self.videos_sheet is None:
logger.warning("No videos_sheet data available")
return "No valid sheet data available", None
combined_df_filtered = self.videos_sheet.copy()
combined_df_filtered = self._apply_date_filter(combined_df_filtered, target_date, True, use_filter)
combined_df_filtered.loc[(combined_df_filtered['Source Name'] == 'direct') &
(combined_df_filtered['Ref By'].isna()), 'Ref By'] = 'direct'
if not {'Ref By', 'User ID', 'SheetName'}.issubset(combined_df_filtered.columns):
return "Required columns missing", None
pivot_table = pd.pivot_table(
combined_df_filtered,
index='Ref By',
columns='SheetName',
values='User ID',
aggfunc='count',
fill_value=0
)
sorted_columns = sorted(pivot_table.columns, key=self._extract_number)
pivot_table = pivot_table[sorted_columns]
pivot_table.loc['Total'] = pivot_table.sum()
return "Success", pivot_table
def count_users_each_sheet_by_date(self, target_date, use_filter):
"""Count users in each sheet by date"""
logger.info("Starting count_users_each_sheet_by_date")
if self.videos_sheet is None:
logger.warning("No videos_sheet data available")
return "No valid sheet data available", None
combined_df_filtered = self.videos_sheet[self.videos_sheet['Created At'].notna()].copy()
combined_df_filtered = self._apply_date_filter(combined_df_filtered, target_date, False, use_filter)
if not {'Created At', 'User ID', 'SheetName'}.issubset(combined_df_filtered.columns):
return "Required columns missing", None
pivot_table = pd.pivot_table(
combined_df_filtered,
index='Created At',
columns='SheetName',
values='User ID',
aggfunc='count',
fill_value=0
)
sorted_columns = sorted(pivot_table.columns, key=self._extract_number)
pivot_table = pivot_table[sorted_columns]
pivot_table.loc['Total'] = pivot_table.sum()
return "Success", pivot_table
def process_file(self, excel_file, operations, target_date, use_date_filter):
"""Process file with selected operations"""
logger.info(f"Processing file with operations: {operations}")
# Initialize videos_sheet if not already done
if self.videos_sheet is None:
self._initialize_videos_sheet(excel_file)
results = {}
output_files = []
result_preview = None
if not excel_file:
logger.warning("No file uploaded")
return "Please upload an Excel file", None, None
try:
# Process single-sheet operations
single_sheet_ops = [
"count_daily_registers_by_source_name",
"count_daily_registers_by_ref",
"count_users_by_source_name",
"count_users_by_ref"
]
if any(op in operations for op in single_sheet_ops):
df = pd.read_excel(excel_file, sheet_name="User Register")
# Normalize 'Created At' for User Register sheet
if 'Created At' in df.columns:
def parse_date(date_str):
if pd.isna(date_str):
return pd.NaT
try:
# Try ISO 8601 format (2025-05-11T19:50:53Z)
return pd.to_datetime(date_str, utc=True).date()
except:
try:
# Try DD-MM-YYYY format (18-04-2025)
return pd.to_datetime(date_str, format='%d-%m-%Y').date()
except:
logger.warning(f"Cannot parse date: {date_str}")
return pd.NaT
df['Created At'] = df['Created At'].apply(parse_date)
if "count_daily_registers_by_source_name" in operations:
pivot = self.count_daily_registers_by_source_name(df, target_date, use_date_filter)
results["Daily Registers by Source Name"] = pivot
buffer, filename = self._create_output_buffer(pivot, "daily_registers_source")
output_files.append((buffer, filename))
if result_preview is None:
result_preview = pivot
if "count_daily_registers_by_ref" in operations:
pivot = self.count_daily_registers_by_ref(df, target_date, use_date_filter)
results["Daily Registers by Ref"] = pivot
buffer, filename = self._create_output_buffer(pivot, "daily_registers_ref")
output_files.append((buffer, filename))
if result_preview is None:
result_preview = pivot
if "count_users_by_source_name" in operations:
pivot = self.count_users_by_source_name(df, target_date, use_date_filter)
results["Users by Source Name"] = pivot
buffer, filename = self._create_output_buffer(pivot, "users_source")
output_files.append((buffer, filename))
if result_preview is None:
result_preview = pivot
if "count_users_by_ref" in operations:
pivot = self.count_users_by_ref(df, target_date, use_date_filter)
results["Users by Ref"] = pivot
buffer, filename = self._create_output_buffer(pivot, "users_ref")
output_files.append((buffer, filename))
if result_preview is None:
result_preview = pivot
# Process multi-sheet operations
if "count_users_each_sheet_by_source_name" in operations:
status, pivot = self.count_users_each_sheet_by_source_name(target_date, use_date_filter)
if status != "Success":
return status, None, None
results["Users Each Sheet by Source Name"] = pivot
buffer, filename = self._create_output_buffer(pivot, "users_sheet_source")
output_files.append((buffer, filename))
if result_preview is None:
result_preview = pivot
if "count_users_each_sheet_by_ref" in operations:
status, pivot = self.count_users_each_sheet_by_ref(target_date, use_date_filter)
if status != "Success":
return status, None, None
results["Users Each Sheet by Ref"] = pivot
buffer, filename = self._create_output_buffer(pivot, "users_sheet_ref")
output_files.append((buffer, filename))
if result_preview is None:
result_preview = pivot
if "count_users_each_sheet_by_date" in operations:
status, pivot = self.count_users_each_sheet_by_date(target_date, use_date_filter)
if status != "Success":
return status, None, None
results["Users Each Sheet by Date"] = pivot
buffer, filename = self._create_output_buffer(pivot, "users_sheet_date")
output_files.append((buffer, filename))
if result_preview is None:
result_preview = pivot
# Create ZIP file
if output_files:
# Use temporary file for ZIP
with tempfile.NamedTemporaryFile(delete=False, suffix='.zip') as tmp_file:
with zipfile.ZipFile(tmp_file, 'w') as zip_file:
for buffer, filename in output_files:
zip_file.writestr(filename, buffer.getvalue())
tmp_file_path = tmp_file.name
if result_preview is not None and result_preview.size > 10000:
result_preview = result_preview.head(100)
return "Processing completed successfully!", result_preview, tmp_file_path
return "No operations performed", None, None
except Exception as e:
logger.error(f"Error during file processing: {str(e)}", exc_info=True)
return f"Error: {str(e)}", None, None
# ... (other methods remain unchanged)
def create_gradio_interface():
"""Create and configure the Gradio interface"""
processor = ExcelDataProcessor()
with gr.Blocks(title="Excel Data Processor") as app:
gr.Markdown("# Excel Data Processing Tool")
gr.Markdown("Upload an Excel file, select operations, and optionally filter by date.")
with gr.Row():
with gr.Column(scale=1):
file_input = gr.File(label="Upload Excel File")
with gr.Group():
gr.Markdown("### Date Filter")
use_date_filter = gr.Checkbox(label="Apply Date Filter", value=False)
target_date = gr.Textbox(
label="Target Date (YYYY-MM-DD)",
value="2025-04-14",
placeholder="YYYY-MM-DD"
)
operations = gr.CheckboxGroup(
choices=[
"count_daily_registers_by_source_name",
"count_daily_registers_by_ref",
"count_users_by_source_name",
"count_users_by_ref",
"count_users_each_sheet_by_source_name",
"count_users_each_sheet_by_ref",
"count_users_each_sheet_by_date"
],
label="Select Operations",
value=["count_daily_registers_by_source_name"]
)
process_btn = gr.Button("Process Excel File", variant="primary")
with gr.Column(scale=2):
status_output = gr.Textbox(label="Status")
result_output = gr.Dataframe(label="Preview Results (Limited to avoid UI freezing)")
download_btn = gr.File(label="Download Results (ZIP)")
def validate_and_process(file, ops, date_str, use_filter):
"""Validate inputs and process file"""
logger.info(f"Processing started with operations: {ops}")
try:
target_date = datetime.datetime.strptime(date_str, '%Y-%m-%d').date()
except ValueError:
return "Invalid date format. Use YYYY-MM-DD", None, None
# Re-initialize processor with new file
processor.__init__(excel_file=file)
return processor.process_file(file, ops, target_date, use_filter)
process_btn.click(
fn=lambda file, ops, date, filter: ("Processing... Please wait.", None, None),
inputs=[file_input, operations, target_date, use_date_filter],
outputs=[status_output, result_output, download_btn],
queue=False
).then(
fn=validate_and_process,
inputs=[file_input, operations, target_date, use_date_filter],
outputs=[status_output, result_output, download_btn]
)
gr.Markdown("""
## Instructions
1. Upload your Excel file
2. Optionally enable date filtering and specify a target date
3. Select desired operations
4. Click "Process Excel File"
5. View preview results and download the ZIP file containing all outputs
## Date Filter
- When enabled, operations by reference use dates < target date
- Operations by source name use dates >= target date
- When disabled, all dates are included
## Operations
- count_daily_registers_by_source_name: Daily registrations by source
- count_daily_registers_by_ref: Daily registrations by referral
- count_users_by_source_name: Unique users by source
- count_users_by_ref: Unique users by referral
- count_users_each_sheet_by_source_name: Users per sheet by source
- count_users_each_sheet_by_ref: Users per sheet by referral
- count_users_each_sheet_by_date: Users per sheet by date
""")
return app
if __name__ == "__main__":
app = create_gradio_interface()
app.launch() |