Spaces:
Sleeping
Sleeping
File size: 5,242 Bytes
b18c318 be6ea65 b18c318 be6ea65 b18c318 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 |
#load & split data
from langchain.text_splitter import RecursiveCharacterTextSplitter
# embed data
from langchain_mistralai.embeddings import MistralAIEmbeddings
# vector store
from langchain_community.vectorstores import FAISS
# prompt
from langchain.prompts import PromptTemplate
# memory
from langchain.memory import ConversationBufferMemory
#llm
from langchain_mistralai.chat_models import ChatMistralAI
#chain modules
from langchain.chains import RetrievalQA
# import PyPDF2
import os
import re
from dotenv import load_dotenv
load_dotenv()
from collections import defaultdict
api_key = os.environ.get("MISTRAL_API_KEY")
class RagModule():
def __init__(self):
self.mistral_api_key = api_key
self.model_name_embedding = "mistral-embed"
self.embedding_model = MistralAIEmbeddings(model=self.model_name_embedding, mistral_api_key=self.mistral_api_key)
self.chunk_size = 1000
self.chunk_overlap = 120
self.text_splitter = RecursiveCharacterTextSplitter(chunk_size=self.chunk_size, chunk_overlap=self.chunk_overlap)
self.db_faiss_path = "data/vector_store"
#params llm
self.llm_model = "mistral-small"
self.max_new_tokens = 512
self.top_p = 0.5
self.temperature = 0.1
def split_text(self, text:str) -> list:
"""Split the text into chunk
Args:
text (str): _description_
Returns:
list: _description_
"""
texts = self.text_splitter.split_text(text)
return texts
def get_metadata(self, texts:list) -> list:
"""_summary_
Args:
texts (list): _description_
Returns:
list: _description_
"""
metadatas = [{"source": f'Paragraphe: {i}'} for i in range(len(texts))]
return metadatas
def get_faiss_db(self):
"""load local faiss vector store containing all embeddings
"""
db = FAISS.load_local(self.db_faiss_path, self.embedding_model)
return db
def set_custom_prompt(self, prompt_template:str):
"""Instantiate prompt template for Q&A retreival for each vectore stores
Args:
prompt_template (str): description of the prompt
input_variables (list): variables in the prompt
"""
prompt = PromptTemplate.from_template(
template=prompt_template,
)
return prompt
def load_mistral(self):
"""instantiate LLM
"""
model_kwargs = {
"mistral_api_key": self.mistral_api_key,
"model": self.llm_model,
"max_new_tokens": self.max_new_tokens,
"top_p": self.top_p,
"temperature": self.temperature,
}
llm = ChatMistralAI(**model_kwargs)
return llm
def retrieval_qa_memory_chain(self, db, prompt_template):
"""_summary_
"""
llm = self.load_mistral()
prompt = self.set_custom_prompt(prompt_template)
memory = ConversationBufferMemory(
memory_key = 'history',
input_key = 'question'
)
chain_type_kwargs= {
"prompt" : prompt,
"memory" : memory
}
qa_chain = RetrievalQA.from_chain_type(
llm = llm,
chain_type = 'stuff',
retriever = db.as_retriever(search_kwargs={"k":5}),
chain_type_kwargs = chain_type_kwargs,
return_source_documents = True,
)
return qa_chain
def retrieval_qa_chain(self, db, prompt_template):
"""_summary_
"""
llm = self.load_llm()
prompt = self.set_custom_prompt(prompt_template)
chain_type_kwargs= {
"prompt" : prompt,
}
qa_chain = RetrievalQA.from_chain_type(
llm = llm,
chain_type = 'stuff',
retriever = db.as_retriever(search_kwargs={"k":3}),
chain_type_kwargs = chain_type_kwargs,
return_source_documents = True,
)
return qa_chain
def get_sources_document(self, source_documents:list) -> dict:
"""generate dictionnary with path (as a key) and list of pages associated to one path
Args:
source_document (list): list of documents containing source_document of rag response
Returns:
dict: {
path/to/file1 : [0, 1, 3],
path/to/file2 : [5, 2]
}
"""
sources = defaultdict(list)
for doc in source_documents:
sources[doc.metadata["source"]].append(doc.metadata["page"])
return sources
def shape_answer_with_source(self, answer: str, sources: dict):
"""_summary_
Args:
answer (str): _description_
source (dict): _description_
"""
pattern = r"^(.+)\/([^\/]+)$"
source_msg = ""
for path, page in sources.items():
file = re.findall(pattern, path)[0][1]
source_msg += f"\nFichier: {file} - Page: {page}"
answer += f"\n{source_msg}"
return answer |