File size: 4,401 Bytes
65a06c2
 
 
 
 
7be10f4
53aa295
65a06c2
 
 
 
 
 
 
 
39284d8
 
65a06c2
 
 
 
 
 
 
 
 
 
 
 
 
39284d8
 
 
 
65a06c2
 
39284d8
65a06c2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
57f8e39
65a06c2
 
57f8e39
65a06c2
 
 
 
 
 
57f8e39
65a06c2
 
39284d8
65a06c2
 
 
 
 
39284d8
 
 
57f8e39
65a06c2
 
 
 
 
39284d8
65a06c2
 
39284d8
65a06c2
39284d8
65a06c2
 
 
 
 
 
 
39284d8
65a06c2
39284d8
65a06c2
 
 
39284d8
 
 
65a06c2
 
 
 
 
 
 
 
39284d8
 
65a06c2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
import streamlit as st
import hopsworks
import joblib
import pandas as pd
import numpy as np
#import folium
#from streamlit_folium import st_folium, folium_static
import json
import time
from datetime import timedelta, datetime
from branca.element import Figure

from functions import decode_features, get_model




def fancy_header(text, font_size=24):
    res = f'<span style="color:#ff5f27; font-size: {font_size}px;">{text}</span>'
    st.markdown(res, unsafe_allow_html=True )


st.title('⛅️Rafat and Larissa do an Air Quality Prediction Project🌩')

progress_bar = st.sidebar.header('⚙️ Working Progress')
progress_bar = st.sidebar.progress(0)
st.write(36 * "-")
fancy_header('\n📡 Connecting to Hopsworks Feature Store...')

project = hopsworks.login()
mr = project.get_model_registry()
model = mr.get_model("gradient_boost_model", version=1)
model_dir = model.download()
# model = joblib.load(model_dir + "/model.pkl")
fs = project.get_feature_store()
feature_view = fs.get_feature_view(
    name = 'helsinki_aqi_fv',
    version = 1
)

st.write("Successfully connected!✔️")
progress_bar.progress(20)

st.write(36 * "-")
fancy_header('\n☁️ Getting batch data from Feature Store...')

start_date = datetime.now() - timedelta(days=1)
start_time = int(start_date.timestamp()) * 1000

X = feature_view.get_batch_data(start_time=start_time)
progress_bar.progress(50)

latest_date_unix = str(X.date.values[0])[:10]
latest_date = time.ctime(int(latest_date_unix))

st.write(f"⏱ Data for {latest_date}")

X = X.drop(columns=["date"]).fillna(0)

data_to_display = decode_features(X, feature_view=feature_view)

progress_bar.progress(60)

st.write(36 * "-")
fancy_header(f"🗺 Processing the map...")

fig = Figure(width=550,height=350)
"""
my_map = folium.Map(location=[58, 20], zoom_start=3.71)
fig.add_child(my_map)

folium.TileLayer('Stamen Terrain').add_to(my_map)
folium.TileLayer('Stamen Toner').add_to(my_map)
folium.TileLayer('Stamen Water Color').add_to(my_map)
folium.TileLayer('cartodbpositron').add_to(my_map)
folium.TileLayer('cartodbdark_matter').add_to(my_map)
folium.LayerControl().add_to(my_map)
"""
data_to_display = data_to_display[["city", "temp", "humidity",
                                            "conditions", "aqi"]]
cities_coords = {("Helsinki", "Finland"): [62.390811, 17.306927]}

data_to_display = data_to_display.set_index("city")

cols_names_dict = {"temp": "Temperature",
                   "humidity": "Humidity",
                   "visibility": "Visibility",
                   "precip": "Precipitation",
                   "cloudcover": "Cloud cover",
                   "uvindex": "UV index",
                   "conditions": "Conditions",
                   "aqi": "AQI"}

data_to_display = data_to_display.rename(columns=cols_names_dict)

cols_ = ["Temperature", "Humidity", "AQI", "Visibility", "Precipitation", "Cloud cover", "UV index"]
data_to_display[cols_] = data_to_display[cols_].apply(lambda x: round(x, 1))

"""
for city, country in cities_coords:
    text = f
            <h4 style="color:green;">{city}</h4>
            <h5 style="color":"green">
                <table style="text-align: right;">
                    <tr>
                        <th>Country:</th>
                        <td><b>{country}</b></td>
                    </tr>
                    
    for column in data_to_display.columns:
        text += f
                    <tr>
                        <th>{column}:</th>
                        <td>{data_to_display.loc[city][column]}</td>
                    </tr>
    text += </table>
                    </h5>

    folium.Marker(
        cities_coords[(city, country)], popup=text, tooltip=f"<strong>{city}</strong>"
    ).add_to(my_map)


# call to render Folium map in Streamlit
folium_static(my_map)
"""

progress_bar.progress(80)
st.sidebar.write("-" * 36)


model = get_model(project=project,
                  model_name="gradient_boost_model",
                  evaluation_metric="f1_score",
                  sort_metrics_by="max")

preds = model.predict(X)

cities = [city_tuple[0] for city_tuple in cities_coords.keys()]

next_day_date = datetime.today() + timedelta(days=1)
next_day = next_day_date.strftime ('%d/%m/%Y')
df = pd.DataFrame(data=preds, index=cities, columns=[f"AQI Predictions for {next_day}"], dtype=int)

st.sidebar.write(df)
progress_bar.progress(100)
st.button("Re-run")