File size: 10,670 Bytes
61f3f56
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
import torch
from torch import nn
from transformers import AutoConfig

from .image.configuration_image import LanguageBindImageConfig
from .image.modeling_image import LanguageBindImage
from .image.tokenization_image import LanguageBindImageTokenizer
from .image.processing_image import LanguageBindImageProcessor

from .video.configuration_video import LanguageBindVideoConfig
from .video.modeling_video import LanguageBindVideo
from .video.tokenization_video import LanguageBindVideoTokenizer
from .video.processing_video import LanguageBindVideoProcessor

from .depth.configuration_depth import LanguageBindDepthConfig
from .depth.modeling_depth import LanguageBindDepth
from .depth.tokenization_depth import LanguageBindDepthTokenizer
from .depth.processing_depth import LanguageBindDepthProcessor

from .audio.configuration_audio import LanguageBindAudioConfig
from .audio.modeling_audio import LanguageBindAudio
from .audio.tokenization_audio import LanguageBindAudioTokenizer
from .audio.processing_audio import LanguageBindAudioProcessor

from .thermal.configuration_thermal import LanguageBindThermalConfig
from .thermal.modeling_thermal import LanguageBindThermal
from .thermal.tokenization_thermal import LanguageBindThermalTokenizer
from .thermal.processing_thermal import LanguageBindThermalProcessor



config_dict = {
    'thermal': LanguageBindThermalConfig,
    'image': LanguageBindImageConfig,
    'video': LanguageBindVideoConfig,
    'depth': LanguageBindDepthConfig,
    'audio': LanguageBindAudioConfig
}
model_dict = {
    'thermal': LanguageBindThermal,
    'image': LanguageBindImage,
    'video': LanguageBindVideo,
    'depth': LanguageBindDepth,
    'audio': LanguageBindAudio
}
transform_dict = {
    'video': LanguageBindVideoProcessor,
    'audio': LanguageBindAudioProcessor,
    'depth': LanguageBindDepthProcessor,
    'thermal': LanguageBindThermalProcessor,
    'image': LanguageBindImageProcessor,
}

class LanguageBind(nn.Module):
    def __init__(self, clip_type=('thermal', 'image', 'video', 'depth', 'audio'), use_temp=True, cache_dir='./cache_dir'):
        super(LanguageBind, self).__init__()
        self.use_temp = use_temp
        self.modality_encoder = {}
        self.modality_proj = {}
        self.modality_scale = {}
        self.modality_config = {}
        for c in clip_type:
            pretrained_ckpt = f'LanguageBind/LanguageBind_{c.capitalize()}'
            model = model_dict[c].from_pretrained(pretrained_ckpt, cache_dir=cache_dir)
            self.modality_encoder[c] = model.vision_model
            self.modality_proj[c] = model.visual_projection
            self.modality_scale[c] = model.logit_scale
            self.modality_config[c] = model.config
        self.modality_encoder['language'] = model.text_model
        self.modality_proj['language'] = model.text_projection

        self.modality_encoder = nn.ModuleDict(self.modality_encoder)
        self.modality_proj = nn.ModuleDict(self.modality_proj)

    def forward(self, inputs):
        outputs = {}
        for key, value in inputs.items():
            value = self.modality_encoder[key](**value)[1]
            value = self.modality_proj[key](value)
            value = value / value.norm(p=2, dim=-1, keepdim=True)
            if self.use_temp:
                if key != 'language':
                    value = value * self.modality_scale[key].exp()
            outputs[key] = value
        return outputs

def to_device(x, device):
    out_dict = {k: v.to(device) for k, v in x.items()}
    return out_dict




class LanguageBindImageTower(nn.Module):
    def __init__(self, image_tower, args, delay_load=False, cache_dir='./cache_dir'):
        super().__init__()

        self.is_loaded = False

        self.image_tower_name = image_tower
        self.select_layer = args.mm_vision_select_layer
        self.select_feature = getattr(args, 'mm_vision_select_feature', 'patch')

        self.cache_dir = cache_dir

        if not delay_load:
            self.load_model()
        else:
            self.cfg_only = LanguageBindImageConfig.from_pretrained(self.image_tower_name, cache_dir=self.cache_dir)

    ############################################################
    def load_model(self):
        model = LanguageBindImage.from_pretrained(self.image_tower_name, cache_dir=self.cache_dir)
        self.image_tower = model.vision_model
        self.image_tower.requires_grad_(False)

        self.image_processor = LanguageBindImageProcessor(model.config)

        self.is_loaded = True

    def feature_select(self, image_forward_outs):
        image_features = image_forward_outs.hidden_states[self.select_layer]
        if self.select_feature == 'patch':
            image_features = image_features[:, 1:]
        elif self.select_feature == 'cls_patch':
            image_features = image_features
        else:
            raise ValueError(f'Unexpected select feature: {self.select_feature}')
        return image_features

    @torch.no_grad()
    def forward(self, images):
        if type(images) is list:
            image_features = []
            for image in images:
                image_forward_out = self.image_tower(image.to(device=self.device, dtype=self.dtype).unsqueeze(0), output_hidden_states=True)
                image_feature = self.feature_select(image_forward_out).to(image.dtype)
                image_features.append(image_feature)
        else:
            # print('images', images.shape)
            image_forward_outs = self.image_tower(images.to(device=self.device, dtype=self.dtype), output_hidden_states=True)
            # print('image_forward_outs', len(image_forward_outs), image_forward_outs[0].shape)
            image_features = self.feature_select(image_forward_outs).to(images.dtype)
            # print('image_features', image_features.shape)

        return image_features

    @property
    def dummy_feature(self):
        return torch.zeros(1, self.hidden_size, device=self.device, dtype=self.dtype)

    @property
    def dtype(self):
        return self.image_tower.embeddings.class_embedding.dtype  #############

    @property
    def device(self):
        return self.image_tower.embeddings.class_embedding.device  ##############

    @property
    def config(self):
        if self.is_loaded:
            return self.image_tower.config
        else:
            return self.cfg_only

    @property
    def hidden_size(self):
        return self.config.hidden_size

    @property
    def num_patches(self):
        return (self.config.image_size // self.config.patch_size) ** 2

class temp_model(nn.Module):
    def __init__(self):
        super(temp_model, self).__init__()
    def forward(self, **kwargs):
        return torch.randn(25, 1, 256, 1024)


class LanguageBindVideoTower(nn.Module):
    def __init__(self, video_tower, args, delay_load=False, cache_dir='./cache_dir'):
        super().__init__()

        self.is_loaded = False

        self.video_tower_name = video_tower
        self.select_layer = args.mm_vision_select_layer
        self.select_feature = getattr(args, 'mm_vision_select_feature', 'patch')

        self.cache_dir = cache_dir

        if not delay_load:
            self.load_model()
        else:
            self.cfg_only = LanguageBindVideoConfig.from_pretrained(self.video_tower_name, cache_dir=self.cache_dir)

    ############################################################
    def load_model(self):
        model = LanguageBindVideo.from_pretrained(self.video_tower_name, cache_dir=self.cache_dir)
        self.video_processor = LanguageBindVideoProcessor(model.config)


        # model = LanguageBindImage.from_pretrained('LanguageBind/LanguageBind_Image', cache_dir=self.cache_dir)
        self.video_tower = model.vision_model
        self.video_tower.requires_grad_(False)


        self.is_loaded = True

    # def feature_select(self, image_forward_outs):
    #     image_features = image_forward_outs.hidden_states[self.select_layer]
    #     if self.select_feature == 'patch':
    #         image_features = image_features[:, 1:]
    #     elif self.select_feature == 'cls_patch':
    #         image_features = image_features
    #     else:
    #         raise ValueError(f'Unexpected select feature: {self.select_feature}')
    #     return image_features

    def feature_select(self, video_forward_outs):
        # print('len(video_forward_outs.hidden_states)', len(video_forward_outs.hidden_states))
        video_features = video_forward_outs.hidden_states[self.select_layer]  # b t n c
        b, t, n, c = video_features.shape
        # print('video_features', video_features.shape)
        if self.select_feature == 'patch':
            # video_features = video_features[:, 1:]
            video_features = video_features[:, :, 1:]
            video_features = video_features.reshape(b, -1, c)
        elif self.select_feature == 'cls_patch':
            # video_features = video_features
            video_features = video_features.reshape(b, -1, c)
        else:
            raise ValueError(f'Unexpected select feature: {self.select_feature}')
        return video_features

    @torch.no_grad()
    def forward(self, videos):
        if type(videos) is list:
            video_features = []
            for video in videos:
                video_forward_out = self.video_tower(video.to(device=self.device, dtype=self.dtype).unsqueeze(0), output_hidden_states=True)
                video_feature = self.feature_select(video_forward_out).to(video.dtype)
                video_features.append(video_feature)
        else:
            # print(11111111111, videos.shape)
            video_forward_outs = self.video_tower(videos.to(device=self.device, dtype=self.dtype), output_hidden_states=True)
            video_features = self.feature_select(video_forward_outs).to(videos.dtype)

        return video_features

    @property
    def dummy_feature(self):
        return torch.zeros(1, self.hidden_size, device=self.device, dtype=self.dtype)

    @property
    def dtype(self):
        return self.video_tower.embeddings.class_embedding.dtype  #############
        # return torch.randn(1).cuda().dtype

    @property
    def device(self):
        return self.video_tower.embeddings.class_embedding.device  ##############
        # return torch.randn(1).cuda().device

    @property
    def config(self):
        if self.is_loaded:
            return self.video_tower.config
        else:
            return self.cfg_only

    @property
    def hidden_size(self):
        return self.config.hidden_size

    @property
    def num_patches(self):
        return (self.config.image_size // self.config.patch_size) ** 2