File size: 6,805 Bytes
61f3f56
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
import math
import os
import argparse
import json

import torch
import transformers
from tqdm import tqdm
from llava.conversation import conv_templates, SeparatorStyle
from llava.constants import DEFAULT_X_START_TOKEN, DEFAULT_X_TOKEN, DEFAULT_X_END_TOKEN, X_TOKEN_INDEX
from llava.mm_utils import get_model_name_from_path, tokenizer_X_token, KeywordsStoppingCriteria
from llava.model.builder import load_pretrained_model
from llava.model.language_model.llava_llama import LlavaLlamaForCausalLM
from llava.train.train import smart_tokenizer_and_embedding_resize


def split_list(lst, n):
    """Split a list into n (roughly) equal-sized chunks"""
    chunk_size = math.ceil(len(lst) / n)  # integer division
    return [lst[i:i+chunk_size] for i in range(0, len(lst), chunk_size)]


def get_chunk(lst, n, k):
    chunks = split_list(lst, n)
    return chunks[k]

def parse_args():
    """
    Parse command-line arguments.
    """
    parser = argparse.ArgumentParser()

    # Define the command-line arguments
    parser.add_argument('--model_path', help='', required=True)
    parser.add_argument('--cache_dir', help='', required=True)
    parser.add_argument('--video_dir', help='Directory containing video files.', required=True)
    parser.add_argument('--gt_file_question', help='Path to the ground truth file containing question.', required=True)
    parser.add_argument('--gt_file_answers', help='Path to the ground truth file containing answers.', required=True)
    parser.add_argument('--output_dir', help='Directory to save the model results JSON.', required=True)
    parser.add_argument('--output_name', help='Name of the file for storing results JSON.', required=True)
    parser.add_argument("--num_chunks", type=int, default=1)
    parser.add_argument("--chunk_idx", type=int, default=0)
    parser.add_argument("--device", type=str, required=False, default='cuda:0')
    parser.add_argument('--model_base', help='', default=None, type=str, required=False)
    parser.add_argument("--model_max_length", type=int, required=False, default=2048)

    return parser.parse_args()

def get_model_output(model, video_processor, tokenizer, video, qs, args):
    if model.config.mm_use_x_start_end:
        qs = DEFAULT_X_START_TOKEN['VIDEO'] + DEFAULT_X_TOKEN['VIDEO'] + DEFAULT_X_END_TOKEN['VIDEO'] + '\n' + qs
    else:
        qs = DEFAULT_X_TOKEN['VIDEO'] + '\n' + qs

    conv_mode = "llava_v1"
    args.conv_mode = conv_mode

    conv = conv_templates[args.conv_mode].copy()
    conv.append_message(conv.roles[0], qs)
    conv.append_message(conv.roles[1], None)
    prompt = conv.get_prompt()


    video_tensor = video_processor.preprocess(video, return_tensors='pt')['pixel_values'][0].half().to(args.device)
    # print(video_tensor.shape)
    input_ids = tokenizer_X_token(prompt, tokenizer, X_TOKEN_INDEX['VIDEO'], return_tensors='pt').unsqueeze(0).to(args.device)

    stop_str = conv.sep if conv.sep_style != SeparatorStyle.TWO else conv.sep2
    keywords = [stop_str]
    stopping_criteria = KeywordsStoppingCriteria(keywords, tokenizer, input_ids)
    '''
    images (X_modalities) [
            [img_feature, img_feature, video_feature, audio_feature],
            ['image', 'image', 'video', 'audio']
            ]
    '''

    with torch.inference_mode():
        output_ids = model.generate(
            input_ids,
            images=[[video_tensor], ['video']],
            do_sample=True,
            temperature=0.2,
            max_new_tokens=1024,
            use_cache=True,
            stopping_criteria=[stopping_criteria])

    input_token_len = input_ids.shape[1]
    n_diff_input_output = (input_ids != output_ids[:, :input_token_len]).sum().item()
    if n_diff_input_output > 0:
        print(f'[Warning] {n_diff_input_output} output_ids are not the same as the input_ids')
    outputs = tokenizer.batch_decode(output_ids[:, input_token_len:], skip_special_tokens=True)[0]
    outputs = outputs.strip()
    if outputs.endswith(stop_str):
        outputs = outputs[:-len(stop_str)]
    outputs = outputs.strip()
    print(outputs)
    return outputs


def run_inference(args):
    """
    Run inference on ActivityNet QA DataSet using the Video-ChatGPT model.

    Args:
        args: Command-line arguments.
    """
    # Initialize the model
    model_name = get_model_name_from_path(args.model_path)
    tokenizer, model, processor, context_len = load_pretrained_model(args.model_path, args.model_base, model_name)
    model = model.to(args.device)

    # Load both ground truth file containing questions and answers
    # with open(args.gt_file_question) as file:
    #     gt_questions = json.load(file)
    # with open(args.gt_file_answers) as file:
    #     gt_answers = json.load(file)

    gt_questions = json.load(open(args.gt_file_question, "r"))
    gt_questions = get_chunk(gt_questions, args.num_chunks, args.chunk_idx)
    gt_answers = json.load(open(args.gt_file_answers, "r"))
    # gt_answers = get_chunk(gt_answers, args.num_chunks, args.chunk_idx)

    answers_file = os.path.join(args.output_dir, f"{args.output_name}.json")
    os.makedirs(args.output_dir, exist_ok=True)
    ans_file = open(answers_file, "w")

    # Create the output directory if it doesn't exist
    if not os.path.exists(args.output_dir):
        os.makedirs(args.output_dir)

    output_list = []  # List to store the output results


    video_formats = ['.mp4', '.avi', '.mov', '.mkv']

    # Iterate over each sample in the ground truth file
    index = 0
    for sample in tqdm(gt_questions):
        video_name = sample['video_name']
        question = sample['question']
        id = sample['question_id']
        answer = gt_answers[index]['answer']
        index += 1

        sample_set = {'id': id, 'question': question, 'answer': answer}

        # Load the video file
        for fmt in tqdm(video_formats):  # Added this line
            temp_path = os.path.join(args.video_dir, f"v_{video_name}{fmt}")
            if os.path.exists(temp_path):
                video_path = temp_path
                # try:
                # Run inference on the video and add the output to the list
                output = get_model_output(model, processor['video'], tokenizer, video_path, question, args)
                sample_set['pred'] = output
                output_list.append(sample_set)
                # except Exception as e:
                #     print(f"Error processing video file '{video_name}': {e}")
                ans_file.write(json.dumps(sample_set) + "\n")
                break

    ans_file.close()
    # Save the output list to a JSON file
    # with open(os.path.join(args.output_dir, f"{args.output_name}.json"), 'w') as file:
    #     json.dump(output_list, file)


if __name__ == "__main__":
    args = parse_args()
    run_inference(args)