File size: 3,506 Bytes
bab971b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
import numpy as np
import torch
from tqdm import tqdm
import cv2
 
def ssim(img1, img2):
    C1 = 0.01 ** 2
    C2 = 0.03 ** 2
    img1 = img1.astype(np.float64)
    img2 = img2.astype(np.float64)
    kernel = cv2.getGaussianKernel(11, 1.5)
    window = np.outer(kernel, kernel.transpose())
    mu1 = cv2.filter2D(img1, -1, window)[5:-5, 5:-5]  # valid
    mu2 = cv2.filter2D(img2, -1, window)[5:-5, 5:-5]
    mu1_sq = mu1 ** 2
    mu2_sq = mu2 ** 2
    mu1_mu2 = mu1 * mu2
    sigma1_sq = cv2.filter2D(img1 ** 2, -1, window)[5:-5, 5:-5] - mu1_sq
    sigma2_sq = cv2.filter2D(img2 ** 2, -1, window)[5:-5, 5:-5] - mu2_sq
    sigma12 = cv2.filter2D(img1 * img2, -1, window)[5:-5, 5:-5] - mu1_mu2
    ssim_map = ((2 * mu1_mu2 + C1) * (2 * sigma12 + C2)) / ((mu1_sq + mu2_sq + C1) *
                                                            (sigma1_sq + sigma2_sq + C2))
    return ssim_map.mean()
 
 
def calculate_ssim_function(img1, img2):
    # [0,1]
    # ssim is the only metric extremely sensitive to gray being compared to b/w 
    if not img1.shape == img2.shape:
        raise ValueError('Input images must have the same dimensions.')
    if img1.ndim == 2:
        return ssim(img1, img2)
    elif img1.ndim == 3:
        if img1.shape[0] == 3:
            ssims = []
            for i in range(3):
                ssims.append(ssim(img1[i], img2[i]))
            return np.array(ssims).mean()                   
        elif img1.shape[0] == 1:
            return ssim(np.squeeze(img1), np.squeeze(img2))
    else:
        raise ValueError('Wrong input image dimensions.')

def trans(x):
    return x

def calculate_ssim(videos1, videos2):
    print("calculate_ssim...")

    # videos [batch_size, timestamps, channel, h, w]
    
    assert videos1.shape == videos2.shape

    videos1 = trans(videos1)
    videos2 = trans(videos2)

    ssim_results = []
    
    for video_num in tqdm(range(videos1.shape[0])):
        # get a video
        # video [timestamps, channel, h, w]
        video1 = videos1[video_num]
        video2 = videos2[video_num]

        ssim_results_of_a_video = []
        for clip_timestamp in range(len(video1)):
            # get a img
            # img [timestamps[x], channel, h, w]
            # img [channel, h, w] numpy

            img1 = video1[clip_timestamp].numpy()
            img2 = video2[clip_timestamp].numpy()
            
            # calculate ssim of a video
            ssim_results_of_a_video.append(calculate_ssim_function(img1, img2))

        ssim_results.append(ssim_results_of_a_video)

    ssim_results = np.array(ssim_results)

    ssim = {}
    ssim_std = {}

    for clip_timestamp in range(len(video1)):
        ssim[clip_timestamp] = np.mean(ssim_results[:,clip_timestamp])
        ssim_std[clip_timestamp] = np.std(ssim_results[:,clip_timestamp])

    result = {
        "value": ssim,
        "value_std": ssim_std,
        "video_setting": video1.shape,
        "video_setting_name": "time, channel, heigth, width",
    }

    return result

# test code / using example

def main():
    NUMBER_OF_VIDEOS = 8
    VIDEO_LENGTH = 50
    CHANNEL = 3
    SIZE = 64
    videos1 = torch.zeros(NUMBER_OF_VIDEOS, VIDEO_LENGTH, CHANNEL, SIZE, SIZE, requires_grad=False)
    videos2 = torch.zeros(NUMBER_OF_VIDEOS, VIDEO_LENGTH, CHANNEL, SIZE, SIZE, requires_grad=False)
    device = torch.device("cuda")

    import json
    result = calculate_ssim(videos1, videos2)
    print(json.dumps(result, indent=4))

if __name__ == "__main__":
    main()