Spaces:
Runtime error
Runtime error
File size: 5,923 Bytes
d7fc160 73d5760 d7fc160 73d5760 d7f33a2 73d5760 d7fc160 73d5760 d7fc160 0d31e31 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 |
import gradio as gr
from gradio_model4dgs import Model4DGS
import os
from PIL import Image
import hashlib
def check_img_input(control_image):
if control_image is None:
raise gr.Error("Please select or upload an input image")
if __name__ == "__main__":
_TITLE = '''DreamGaussian: Generative Gaussian Splatting for Efficient 3D Content Creation'''
_DESCRIPTION = '''
<div>
<a style="display:inline-block" href="https://jiawei-ren.github.io/projects/dreamgaussian4d/"><img src='https://img.shields.io/badge/public_website-8A2BE2'></a>
<a style="display:inline-block; margin-left: .5em" href="https://arxiv.org/abs/2312.17142"><img src="https://img.shields.io/badge/2309.16653-f9f7f7?logo="></a>
<a style="display:inline-block; margin-left: .5em" href='https://github.com/jiawei-ren/dreamgaussian4d'><img src='https://img.shields.io/github/stars/jiawei-ren/dreamgaussian4d?style=social'/></a>
</div>
We introduce DreamGaussian4D, an efficient 4D generation framework that builds on 4D Gaussian Splatting representation.
'''
# load images in 'assets' folder as examples
image_dir = os.path.join(os.path.dirname(__file__), "assets")
examples_img = None
if os.path.exists(image_dir) and os.path.isdir(image_dir) and os.listdir(image_dir):
examples_4d = [os.path.join(image_dir, file) for file in os.listdir(image_dir) if file.endswith('.ply')]
examples_img = [os.path.join(image_dir, file) for file in os.listdir(image_dir) if file.endswith('.png')]
else:
examples_4d = [os.path.join(os.path.dirname(__file__), example) for example in Model4DGS().example_inputs()]
def optimize(image_block: Image.Image):
# temporarily only show tiger
return f'{os.path.join(os.path.dirname(__file__), "logs")}/tiger.glb', examples_4d
# Compose demo layout & data flow
with gr.Blocks(title=_TITLE, theme=gr.themes.Soft()) as demo:
with gr.Row():
with gr.Column(scale=1):
gr.Markdown('# ' + _TITLE)
gr.Markdown(_DESCRIPTION)
with gr.Row(variant='panel'):
left_column = gr.Column(scale=5)
with left_column:
image_block = gr.Image(type='pil', image_mode='RGBA', height=290, label='Input image')
preprocess_chk = gr.Checkbox(True,
label='Preprocess image automatically (remove background and recenter object)')
with gr.Column(scale=5):
obj3d = gr.Model3D(clear_color=[0.0, 0.0, 0.0, 0.0], label="3D Model (Final)")
obj4d = Model4DGS(label="4D Model")
with left_column:
gr.Examples(
examples=examples_img, # NOTE: elements must match inputs list!
inputs=image_block,
outputs=obj3d,
fn=optimize,
label='Examples (click one of the images below to start)',
examples_per_page=40
)
img_run_btn = gr.Button("Generate 4D")
# if there is an input image, continue with inference
# else display an error message
img_run_btn.click(check_img_input, inputs=[image_block], queue=False).success(
optimize, inputs=[image_block], outputs=[obj3d, obj4d])
if __name__ == "__main__":
demo.launch(share=True) |