File size: 5,923 Bytes
d7fc160
 
 
73d5760
 
d7fc160
73d5760
 
 
d7f33a2
73d5760
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d7fc160
73d5760
 
 
 
d7fc160
 
0d31e31
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
import gradio as gr
from gradio_model4dgs import Model4DGS
import os
from PIL import Image
import hashlib

def check_img_input(control_image):
    if control_image is None:
        raise gr.Error("Please select or upload an input image")

if __name__ == "__main__":
    _TITLE = '''DreamGaussian: Generative Gaussian Splatting for Efficient 3D Content Creation'''

    _DESCRIPTION = '''
    <div>
    <a style="display:inline-block" href="https://jiawei-ren.github.io/projects/dreamgaussian4d/"><img src='https://img.shields.io/badge/public_website-8A2BE2'></a>
    <a style="display:inline-block; margin-left: .5em" href="https://arxiv.org/abs/2312.17142"><img src="https://img.shields.io/badge/2309.16653-f9f7f7?logo="></a>
    <a style="display:inline-block; margin-left: .5em" href='https://github.com/jiawei-ren/dreamgaussian4d'><img src='https://img.shields.io/github/stars/jiawei-ren/dreamgaussian4d?style=social'/></a>
    </div>
    We introduce DreamGaussian4D, an efficient 4D generation framework that builds on 4D Gaussian Splatting representation.
    '''

    # load images in 'assets' folder as examples
    image_dir = os.path.join(os.path.dirname(__file__), "assets")
    examples_img = None

    if os.path.exists(image_dir) and os.path.isdir(image_dir) and os.listdir(image_dir):
        examples_4d = [os.path.join(image_dir, file) for file in os.listdir(image_dir) if file.endswith('.ply')]
        examples_img = [os.path.join(image_dir, file) for file in os.listdir(image_dir) if file.endswith('.png')]
    else:
        examples_4d = [os.path.join(os.path.dirname(__file__), example) for example in Model4DGS().example_inputs()]
        
    def optimize(image_block: Image.Image):
        # temporarily only show tiger
        return f'{os.path.join(os.path.dirname(__file__), "logs")}/tiger.glb', examples_4d

    # Compose demo layout & data flow
    with gr.Blocks(title=_TITLE, theme=gr.themes.Soft()) as demo:
        with gr.Row():
            with gr.Column(scale=1):
                gr.Markdown('# ' + _TITLE)
        gr.Markdown(_DESCRIPTION)

        with gr.Row(variant='panel'):
            left_column = gr.Column(scale=5)
            with left_column:
                image_block = gr.Image(type='pil', image_mode='RGBA', height=290, label='Input image')

                preprocess_chk = gr.Checkbox(True,
                                             label='Preprocess image automatically (remove background and recenter object)')

            with gr.Column(scale=5):
                obj3d = gr.Model3D(clear_color=[0.0, 0.0, 0.0, 0.0], label="3D Model (Final)")
                obj4d = Model4DGS(label="4D Model")

            with left_column:
                gr.Examples(
                    examples=examples_img,  # NOTE: elements must match inputs list!
                    inputs=image_block,
                    outputs=obj3d,
                    fn=optimize,
                    label='Examples (click one of the images below to start)',
                    examples_per_page=40
                )
                img_run_btn = gr.Button("Generate 4D")

            # if there is an input image, continue with inference
            # else display an error message
            img_run_btn.click(check_img_input, inputs=[image_block], queue=False).success(
                optimize, inputs=[image_block], outputs=[obj3d, obj4d])

if __name__ == "__main__":
    demo.launch(share=True)