File size: 11,938 Bytes
2c2434b
7f25d73
bb9d3db
 
2c2434b
 
 
 
 
 
 
bb9d3db
 
 
f50765e
880a3ee
f50765e
880a3ee
f50765e
 
2c2434b
 
a3de917
2c2434b
 
 
 
bb9d3db
 
2c2434b
 
 
bb9d3db
a3de917
bb9d3db
2c2434b
 
bb9d3db
 
 
 
 
a3de917
 
bb9d3db
2c2434b
 
 
 
bb9d3db
 
 
 
2c2434b
bb9d3db
 
 
 
 
f439788
 
55dc152
1c98694
f439788
f50765e
 
 
 
 
 
07d4dbb
 
 
 
 
 
 
1934bbb
 
07d4dbb
 
 
 
 
 
 
 
4012d7a
bb9d3db
f848d35
bb9d3db
 
 
 
 
 
 
 
 
 
 
 
f848d35
bb9d3db
 
 
 
e66d0bb
bb9d3db
 
 
 
 
f50765e
bb9d3db
f50765e
4012d7a
7f25d73
 
 
4012d7a
 
7f25d73
 
4012d7a
7f25d73
bb9d3db
7f25d73
 
 
bb9d3db
 
7f25d73
 
 
4012d7a
7f25d73
4012d7a
b888137
 
 
 
 
bb9d3db
 
f9c21c3
b888137
 
bb9d3db
 
 
 
 
f50765e
bb9d3db
0b06e10
bb9d3db
 
 
9943f34
bb9d3db
 
 
 
 
 
 
9943f34
 
bb9d3db
 
 
 
 
 
 
 
4a677e7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bb9d3db
 
 
 
 
 
 
4a677e7
 
 
 
bb9d3db
4a677e7
bb9d3db
4a677e7
 
bb9d3db
4a677e7
 
 
 
bb9d3db
4a677e7
bb9d3db
4a677e7
bb9d3db
4a677e7
 
 
 
 
 
bb9d3db
4a677e7
bb9d3db
4a677e7
 
 
f848d35
 
 
 
 
bb9d3db
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
import shutil
import cv2
import mediapipe as mp
from werkzeug.utils import secure_filename
import tensorflow as tf
import os
from flask import Flask, jsonify, request, flash, redirect, url_for
from pyngrok import ngrok
from fastapi import FastAPI, HTTPException, File, UploadFile, Request
from fastapi.staticfiles import StaticFiles
from fastapi.responses import JSONResponse
from pydantic import BaseModel
import subprocess
from hairstyle_recommendation import HairstyleRecommendation
import requests

# A FUCKING PI 
app = FastAPI()
API_URL = "https://api-inference.huggingface.co/models/rizvandwiki/gender-classification-2"
headers = {"Authorization": "Bearer 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"}
public_url = "https://lambang0902-test-space.hf.space"
app.mount("/static", StaticFiles(directory="static"), name="static")

# Tempat deklarasi variabel-variabel penting
filepath = ""
list_class = ['Diamond','Oblong','Oval','Round','Square','Triangle']
list_folder = ['Training', 'Testing']
recommendation = HairstyleRecommendation()

face_crop_img = True
face_landmark_img = True
landmark_extraction_img = True
#-----------------------------------------------------

#-----------------------------------------------------
# Tempat deklarasi model dan sejenisnya
selected_model = tf.keras.models.load_model(f'models/fc_model_1.h5', compile=False)
face_cascade = cv2.CascadeClassifier('haarcascade_frontalface_alt2.xml')
mp_drawing = mp.solutions.drawing_utils
mp_face_mesh = mp.solutions.face_mesh
drawing_spec = mp_drawing.DrawingSpec(thickness=1, circle_radius=1)
# #-----------------------------------------------------


# #-----------------------------------------------------
# Tempat setting server
UPLOAD_FOLDER = './upload'
UPLOAD_MODEL = './models'
ALLOWED_EXTENSIONS = {'png', 'jpg', 'jpeg','zip','h5'}
# app.config['UPLOAD_FOLDER'] = UPLOAD_FOLDER
# app.config['UPLOAD_MODEL'] = UPLOAD_MODEL
# app.config['MAX_CONTENT_LENGTH'] = 500 * 1024 * 1024  # 500 MB
# #-----------------------------------------------------

#
from file_processing import FileProcess
from get_load_data import GetLoadData
from data_preprocess import DataProcessing
from train_pred import TrainPred
#-----------------------------------------------------

data_processor = DataProcessing()
data_train_pred = TrainPred()

def get_gender(filename):
    with open(filename, "rb") as f:
        data = f.read()
    response = requests.post(API_URL, headers=headers, data=data)
    return response.json()

import random
def preprocessing(filepath):
    folder_path = './static/temporary'

    shutil.rmtree(folder_path)
    os.mkdir(folder_path)

    data_processor.detect_landmark(data_processor.face_cropping_pred(filepath))
    # data_processor.enhance_contrast_histeq(data_processor.face_cropping_pred(filepath))

    files = os.listdir(folder_path)
    index = 0
    for file_name in files:
        file_ext = os.path.splitext(file_name)[1]
        new_file_name = str(index) + "_" + str(random.randint(1, 100000)) + file_ext
        os.rename(os.path.join(folder_path, file_name), os.path.join(folder_path, new_file_name))
        index += 1

    print("Tungu sampai selesaiii")

train_datagen = tf.keras.preprocessing.image.ImageDataGenerator(rescale=1 / 255.)
test_datagen = tf.keras.preprocessing.image.ImageDataGenerator(rescale=1 / 255.)

#-----------------------------------------------------
# Fungsi untuk menjalankan ngrok
def run_ngrok():
    try:
        # Jalankan ngrok dan simpan prosesnya
        ngrok_process = subprocess.Popen(['ngrok', 'http', '8000'])
        return ngrok_process
    except Exception as e:
        print(f"Error running ngrok: {e}")


@app.get("/")
async def root():
    # Dapatkan URL publik dari ngrok
    return {"message": "Server berfungsi ya ges ya"}

# -------------------------------------------------------------------------
#                   API UNTUK MELAKUKAN PROSES PREDIKSI
# -------------------------------------------------------------------------
# Use a pipeline as a high-level helper
# from transformers import pipeline

# pipe = pipeline("image-classification", model="rizvandwiki/gender-classification-2")

@app.post('/upload/file',tags=["Predicting"])
async def upload_file(picture: UploadFile):
    file_extension = picture.filename.split('.')[-1].lower()


    if file_extension not in ALLOWED_EXTENSIONS:
        raise HTTPException(status_code=400, detail='Invalid file extension')

    os.makedirs(UPLOAD_FOLDER, exist_ok=True)
    file_path = os.path.join(UPLOAD_FOLDER, secure_filename(picture.filename))
    with open(file_path, 'wb') as f:
        f.write(picture.file.read())
    try:
        preprocessing(cv2.imread(file_path))

    except Exception as e:
        os.remove(file_path)
        raise HTTPException(status_code=500, detail=f'Error processing image: {str(e)}')

    return JSONResponse(content={'message': 'File successfully uploaded'}, status_code=200)

@app.get('/get_images', tags=["Predicting"])
def get_images():
    folder_path = "./static/temporary"
    files = [f for f in os.listdir(folder_path) if os.path.isfile(os.path.join(folder_path, f))]
    urls = []

    # Image preprocessed url
    for i in range(0, 4):
        url = f'{public_url}/static/temporary/{files[i]}'
        urls.append(url)

    # Face shape classification
    bentuk, persentase = data_train_pred.prediction(selected_model)

    # Gender classification
    gender_classify = get_gender('./static/result_upload0.jpg')
    output_gender = max(gender_classify, key=lambda x: x['score'])['label']
    print(output_gender)


    # Hairstyle recommendation
    recommended_styles, style_images, hairstyle_description = recommendation.get_recommendation(output_gender, bentuk[0])
    hairstyleImage = [f'{public_url}/static/hairstyle_image/{file}' for file in style_images]

    response = {'urls': urls,
                'bentuk_wajah': bentuk[0],
                'persen': persentase,
                'gender': output_gender,
                'hair_style': recommended_styles,
                'hair_image': hairstyleImage,
                'hair_description' : hairstyle_description}
    return response


# -------------------------------------------------------------------------
#                   API UNTUK MELAKUKAN PROSES TRAINING
# -------------------------------------------------------------------------

# Model pydantic untuk validasi body
# class TrainingParams(BaseModel):
#     optimizer: str
#     epoch: int
#     batchSize: int

# @app.post('/upload/dataset', tags=["Training"])
# async def upload_data(dataset: UploadFile):
#     if dataset.filename == '':
#         raise HTTPException(status_code=400, detail='No file selected for uploading')

#     # Buat path lengkap untuk menyimpan file
#     file_path = os.path.join(UPLOAD_FOLDER, dataset.filename)

#     # Simpan file ke folder yang ditentukan
#     with open(file_path, "wb") as file_object:
#         file_object.write(dataset.file.read())

#     # Panggil fungsi untuk mengekstrak file jika perlu
#     FileProcess.extract_zip(file_path)

#     return {'message': 'File successfully uploaded'}

# @app.post('/set_params', tags=["Training"])
# async def set_params(request: Request, params: TrainingParams):
#     global optimizer, epoch, batch_size

#     optimizer = params.optimizer
#     epoch = params.epoch
#     batch_size = params.batchSize

#     response = {'message': 'Set parameter sukses'}
#     return response

# @app.get('/get_info_data', tags=["Training"])
# def get_info_prepro():
#     global optimizer, epoch, batch_size
#     training_counts = GetLoadData.get_training_file_counts().json
#     testing_counts = GetLoadData.get_testing_file_counts().json
#     response = {
#         "optimizer": optimizer,
#         "epoch": epoch,
#         "batch_size": batch_size,
#         "training_counts": training_counts,
#         "testing_counts": testing_counts
#     }
#     return response

# @app.get('/get_images_preprocess', tags=["Training"])
# def get_random_images_crop():
#     images_face_landmark = GetLoadData.get_random_images(tahap="Face Landmark",public_url=public_url)
#     images_face_extraction = GetLoadData.get_random_images(tahap="landmark Extraction", public_url=public_url)

#     response = {
#         "face_landmark": images_face_landmark,
#         "landmark_extraction": images_face_extraction
#     }
#     return response

# @app.get('/do_preprocessing', tags=["Training"])
# async def do_preprocessing():
#     try:
#         data_train_pred.do_pre1(test="")
#         data_train_pred.do_pre2(test="")
#         return {'message': 'Preprocessing sukses'}
#     except Exception as e:
#         # Tangani kesalahan dan kembalikan respons kesalahan
#         error_message = f'Error during preprocessing: {str(e)}'
#         raise HTTPException(status_code=500, detail=error_message)

# @app.get('/do_training', tags=["Training"])
# def do_training():
#     global epoch
#     folder = ""
#     if (face_landmark_img == True and landmark_extraction_img == True):
#         folder = "Landmark Extraction"
#     elif (face_landmark_img == True and landmark_extraction_img == False):
#         folder = "Face Landmark"
#     # --------------------------------------------------------------
#     train_dataset_path = f"./static/dataset/{folder}/Training/"
#     test_dataset_path = f"./static/dataset/{folder}/Testing/"

#     train_image_df, test_image_df = GetLoadData.load_image_dataset(train_dataset_path, test_dataset_path)

#     train_gen, test_gen = data_train_pred.data_configuration(train_image_df, test_image_df)
#     model = data_train_pred.model_architecture()

#     result = data_train_pred.train_model(model, train_gen, test_gen, epoch)

#     # Mengambil nilai akurasi training dan validation dari objek result
#     train_acc = result.history['accuracy'][-1]
#     val_acc = result.history['val_accuracy'][-1]

#     # Plot accuracy
#     data_train_pred.plot_accuracy(result=result, epoch=epoch)
#     acc_url = f'{public_url}/static/accuracy_plot.png'

#     # Plot loss
#     data_train_pred.plot_loss(result=result, epoch=epoch)
#     loss_url = f'{public_url}/static/loss_plot.png'

#     # Confusion Matrix
#     data_train_pred.plot_confusion_matrix(model, test_gen)
#     conf_url = f'{public_url}/static/confusion_matrix.png'

#     return jsonify({'train_acc': train_acc, 'val_acc': val_acc, 'plot_acc': acc_url, 'plot_loss':loss_url,'conf':conf_url})


# -------------------------------------------------------------------------
#                   API UNTUK PEMILIHAN MODEL
# -------------------------------------------------------------------------


# @app.post('/upload/model', tags=["Model"])
# def upload_model():
#     if 'file' not in request.files:
#         return {'message': 'No file part in the request'}, 400

#     file = request.files['file']

#     if file.filename == '':
#         return {'message': 'No file selected for uploading'}, 400

#     if file and FileProcess.allowed_file(file.filename):
#         filename = secure_filename(file.filename)
#         filepath = os.path.join(app.config['UPLOAD_MODEL'], filename)
#         file.save(filepath)

#         return {'message': 'File successfully uploaded'}

#     return {'message': 'File failed to uploaded'}

# @app.post('/selected_models')
# def select_models(index: int):
#     global selected_model
#     try:
#         global selected_model
#         selected_model = tf.keras.models.load_model(f'models/fc_model_{index}.h5')

#         # Lakukan sesuatu dengan indeks yang diterima

#         return {'message': 'Request berhasil diterima'}
#     except Exception as e:
#         raise HTTPException(status_code=500, detail=f'Error: {str(e)}')

if __name__ == '__main__':
    import uvicorn
    public_url = ngrok.connect(8080).public_url
    print(f' * Running on {public_url}')
    uvicorn.run(app, host="0.0.0.0", port=8080)
    # app = FastAPI()