Spaces:
Runtime error
Runtime error
File size: 11,938 Bytes
2c2434b 7f25d73 bb9d3db 2c2434b bb9d3db f50765e 880a3ee f50765e 880a3ee f50765e 2c2434b a3de917 2c2434b bb9d3db 2c2434b bb9d3db a3de917 bb9d3db 2c2434b bb9d3db a3de917 bb9d3db 2c2434b bb9d3db 2c2434b bb9d3db f439788 55dc152 1c98694 f439788 f50765e 07d4dbb 1934bbb 07d4dbb 4012d7a bb9d3db f848d35 bb9d3db f848d35 bb9d3db e66d0bb bb9d3db f50765e bb9d3db f50765e 4012d7a 7f25d73 4012d7a 7f25d73 4012d7a 7f25d73 bb9d3db 7f25d73 bb9d3db 7f25d73 4012d7a 7f25d73 4012d7a b888137 bb9d3db f9c21c3 b888137 bb9d3db f50765e bb9d3db 0b06e10 bb9d3db 9943f34 bb9d3db 9943f34 bb9d3db 4a677e7 bb9d3db 4a677e7 bb9d3db 4a677e7 bb9d3db 4a677e7 bb9d3db 4a677e7 bb9d3db 4a677e7 bb9d3db 4a677e7 bb9d3db 4a677e7 bb9d3db 4a677e7 bb9d3db 4a677e7 f848d35 bb9d3db |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 |
import shutil
import cv2
import mediapipe as mp
from werkzeug.utils import secure_filename
import tensorflow as tf
import os
from flask import Flask, jsonify, request, flash, redirect, url_for
from pyngrok import ngrok
from fastapi import FastAPI, HTTPException, File, UploadFile, Request
from fastapi.staticfiles import StaticFiles
from fastapi.responses import JSONResponse
from pydantic import BaseModel
import subprocess
from hairstyle_recommendation import HairstyleRecommendation
import requests
# A FUCKING PI
app = FastAPI()
API_URL = "https://api-inference.huggingface.co/models/rizvandwiki/gender-classification-2"
headers = {"Authorization": "Bearer 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"}
public_url = "https://lambang0902-test-space.hf.space"
app.mount("/static", StaticFiles(directory="static"), name="static")
# Tempat deklarasi variabel-variabel penting
filepath = ""
list_class = ['Diamond','Oblong','Oval','Round','Square','Triangle']
list_folder = ['Training', 'Testing']
recommendation = HairstyleRecommendation()
face_crop_img = True
face_landmark_img = True
landmark_extraction_img = True
#-----------------------------------------------------
#-----------------------------------------------------
# Tempat deklarasi model dan sejenisnya
selected_model = tf.keras.models.load_model(f'models/fc_model_1.h5', compile=False)
face_cascade = cv2.CascadeClassifier('haarcascade_frontalface_alt2.xml')
mp_drawing = mp.solutions.drawing_utils
mp_face_mesh = mp.solutions.face_mesh
drawing_spec = mp_drawing.DrawingSpec(thickness=1, circle_radius=1)
# #-----------------------------------------------------
# #-----------------------------------------------------
# Tempat setting server
UPLOAD_FOLDER = './upload'
UPLOAD_MODEL = './models'
ALLOWED_EXTENSIONS = {'png', 'jpg', 'jpeg','zip','h5'}
# app.config['UPLOAD_FOLDER'] = UPLOAD_FOLDER
# app.config['UPLOAD_MODEL'] = UPLOAD_MODEL
# app.config['MAX_CONTENT_LENGTH'] = 500 * 1024 * 1024 # 500 MB
# #-----------------------------------------------------
#
from file_processing import FileProcess
from get_load_data import GetLoadData
from data_preprocess import DataProcessing
from train_pred import TrainPred
#-----------------------------------------------------
data_processor = DataProcessing()
data_train_pred = TrainPred()
def get_gender(filename):
with open(filename, "rb") as f:
data = f.read()
response = requests.post(API_URL, headers=headers, data=data)
return response.json()
import random
def preprocessing(filepath):
folder_path = './static/temporary'
shutil.rmtree(folder_path)
os.mkdir(folder_path)
data_processor.detect_landmark(data_processor.face_cropping_pred(filepath))
# data_processor.enhance_contrast_histeq(data_processor.face_cropping_pred(filepath))
files = os.listdir(folder_path)
index = 0
for file_name in files:
file_ext = os.path.splitext(file_name)[1]
new_file_name = str(index) + "_" + str(random.randint(1, 100000)) + file_ext
os.rename(os.path.join(folder_path, file_name), os.path.join(folder_path, new_file_name))
index += 1
print("Tungu sampai selesaiii")
train_datagen = tf.keras.preprocessing.image.ImageDataGenerator(rescale=1 / 255.)
test_datagen = tf.keras.preprocessing.image.ImageDataGenerator(rescale=1 / 255.)
#-----------------------------------------------------
# Fungsi untuk menjalankan ngrok
def run_ngrok():
try:
# Jalankan ngrok dan simpan prosesnya
ngrok_process = subprocess.Popen(['ngrok', 'http', '8000'])
return ngrok_process
except Exception as e:
print(f"Error running ngrok: {e}")
@app.get("/")
async def root():
# Dapatkan URL publik dari ngrok
return {"message": "Server berfungsi ya ges ya"}
# -------------------------------------------------------------------------
# API UNTUK MELAKUKAN PROSES PREDIKSI
# -------------------------------------------------------------------------
# Use a pipeline as a high-level helper
# from transformers import pipeline
# pipe = pipeline("image-classification", model="rizvandwiki/gender-classification-2")
@app.post('/upload/file',tags=["Predicting"])
async def upload_file(picture: UploadFile):
file_extension = picture.filename.split('.')[-1].lower()
if file_extension not in ALLOWED_EXTENSIONS:
raise HTTPException(status_code=400, detail='Invalid file extension')
os.makedirs(UPLOAD_FOLDER, exist_ok=True)
file_path = os.path.join(UPLOAD_FOLDER, secure_filename(picture.filename))
with open(file_path, 'wb') as f:
f.write(picture.file.read())
try:
preprocessing(cv2.imread(file_path))
except Exception as e:
os.remove(file_path)
raise HTTPException(status_code=500, detail=f'Error processing image: {str(e)}')
return JSONResponse(content={'message': 'File successfully uploaded'}, status_code=200)
@app.get('/get_images', tags=["Predicting"])
def get_images():
folder_path = "./static/temporary"
files = [f for f in os.listdir(folder_path) if os.path.isfile(os.path.join(folder_path, f))]
urls = []
# Image preprocessed url
for i in range(0, 4):
url = f'{public_url}/static/temporary/{files[i]}'
urls.append(url)
# Face shape classification
bentuk, persentase = data_train_pred.prediction(selected_model)
# Gender classification
gender_classify = get_gender('./static/result_upload0.jpg')
output_gender = max(gender_classify, key=lambda x: x['score'])['label']
print(output_gender)
# Hairstyle recommendation
recommended_styles, style_images, hairstyle_description = recommendation.get_recommendation(output_gender, bentuk[0])
hairstyleImage = [f'{public_url}/static/hairstyle_image/{file}' for file in style_images]
response = {'urls': urls,
'bentuk_wajah': bentuk[0],
'persen': persentase,
'gender': output_gender,
'hair_style': recommended_styles,
'hair_image': hairstyleImage,
'hair_description' : hairstyle_description}
return response
# -------------------------------------------------------------------------
# API UNTUK MELAKUKAN PROSES TRAINING
# -------------------------------------------------------------------------
# Model pydantic untuk validasi body
# class TrainingParams(BaseModel):
# optimizer: str
# epoch: int
# batchSize: int
# @app.post('/upload/dataset', tags=["Training"])
# async def upload_data(dataset: UploadFile):
# if dataset.filename == '':
# raise HTTPException(status_code=400, detail='No file selected for uploading')
# # Buat path lengkap untuk menyimpan file
# file_path = os.path.join(UPLOAD_FOLDER, dataset.filename)
# # Simpan file ke folder yang ditentukan
# with open(file_path, "wb") as file_object:
# file_object.write(dataset.file.read())
# # Panggil fungsi untuk mengekstrak file jika perlu
# FileProcess.extract_zip(file_path)
# return {'message': 'File successfully uploaded'}
# @app.post('/set_params', tags=["Training"])
# async def set_params(request: Request, params: TrainingParams):
# global optimizer, epoch, batch_size
# optimizer = params.optimizer
# epoch = params.epoch
# batch_size = params.batchSize
# response = {'message': 'Set parameter sukses'}
# return response
# @app.get('/get_info_data', tags=["Training"])
# def get_info_prepro():
# global optimizer, epoch, batch_size
# training_counts = GetLoadData.get_training_file_counts().json
# testing_counts = GetLoadData.get_testing_file_counts().json
# response = {
# "optimizer": optimizer,
# "epoch": epoch,
# "batch_size": batch_size,
# "training_counts": training_counts,
# "testing_counts": testing_counts
# }
# return response
# @app.get('/get_images_preprocess', tags=["Training"])
# def get_random_images_crop():
# images_face_landmark = GetLoadData.get_random_images(tahap="Face Landmark",public_url=public_url)
# images_face_extraction = GetLoadData.get_random_images(tahap="landmark Extraction", public_url=public_url)
# response = {
# "face_landmark": images_face_landmark,
# "landmark_extraction": images_face_extraction
# }
# return response
# @app.get('/do_preprocessing', tags=["Training"])
# async def do_preprocessing():
# try:
# data_train_pred.do_pre1(test="")
# data_train_pred.do_pre2(test="")
# return {'message': 'Preprocessing sukses'}
# except Exception as e:
# # Tangani kesalahan dan kembalikan respons kesalahan
# error_message = f'Error during preprocessing: {str(e)}'
# raise HTTPException(status_code=500, detail=error_message)
# @app.get('/do_training', tags=["Training"])
# def do_training():
# global epoch
# folder = ""
# if (face_landmark_img == True and landmark_extraction_img == True):
# folder = "Landmark Extraction"
# elif (face_landmark_img == True and landmark_extraction_img == False):
# folder = "Face Landmark"
# # --------------------------------------------------------------
# train_dataset_path = f"./static/dataset/{folder}/Training/"
# test_dataset_path = f"./static/dataset/{folder}/Testing/"
# train_image_df, test_image_df = GetLoadData.load_image_dataset(train_dataset_path, test_dataset_path)
# train_gen, test_gen = data_train_pred.data_configuration(train_image_df, test_image_df)
# model = data_train_pred.model_architecture()
# result = data_train_pred.train_model(model, train_gen, test_gen, epoch)
# # Mengambil nilai akurasi training dan validation dari objek result
# train_acc = result.history['accuracy'][-1]
# val_acc = result.history['val_accuracy'][-1]
# # Plot accuracy
# data_train_pred.plot_accuracy(result=result, epoch=epoch)
# acc_url = f'{public_url}/static/accuracy_plot.png'
# # Plot loss
# data_train_pred.plot_loss(result=result, epoch=epoch)
# loss_url = f'{public_url}/static/loss_plot.png'
# # Confusion Matrix
# data_train_pred.plot_confusion_matrix(model, test_gen)
# conf_url = f'{public_url}/static/confusion_matrix.png'
# return jsonify({'train_acc': train_acc, 'val_acc': val_acc, 'plot_acc': acc_url, 'plot_loss':loss_url,'conf':conf_url})
# -------------------------------------------------------------------------
# API UNTUK PEMILIHAN MODEL
# -------------------------------------------------------------------------
# @app.post('/upload/model', tags=["Model"])
# def upload_model():
# if 'file' not in request.files:
# return {'message': 'No file part in the request'}, 400
# file = request.files['file']
# if file.filename == '':
# return {'message': 'No file selected for uploading'}, 400
# if file and FileProcess.allowed_file(file.filename):
# filename = secure_filename(file.filename)
# filepath = os.path.join(app.config['UPLOAD_MODEL'], filename)
# file.save(filepath)
# return {'message': 'File successfully uploaded'}
# return {'message': 'File failed to uploaded'}
# @app.post('/selected_models')
# def select_models(index: int):
# global selected_model
# try:
# global selected_model
# selected_model = tf.keras.models.load_model(f'models/fc_model_{index}.h5')
# # Lakukan sesuatu dengan indeks yang diterima
# return {'message': 'Request berhasil diterima'}
# except Exception as e:
# raise HTTPException(status_code=500, detail=f'Error: {str(e)}')
if __name__ == '__main__':
import uvicorn
public_url = ngrok.connect(8080).public_url
print(f' * Running on {public_url}')
uvicorn.run(app, host="0.0.0.0", port=8080)
# app = FastAPI()
|