Spaces:
Runtime error
Runtime error
File size: 7,792 Bytes
0c212b0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 |
STR_CLIP_ID = 'clip_id'
STR_AUDIO_SIGNAL = 'audio_signal'
STR_TARGET_VECTOR = 'target_vector'
STR_CH_FIRST = 'channels_first'
STR_CH_LAST = 'channels_last'
import io
import os
import tqdm
import logging
import subprocess
from typing import Tuple
from pathlib import Path
# import librosa
import numpy as np
import soundfile as sf
import itertools
from numpy.fft import irfft
def _resample_load_ffmpeg(path: str, sample_rate: int, downmix_to_mono: bool) -> Tuple[np.ndarray, int]:
"""
Decoding, downmixing, and downsampling by librosa.
Returns a channel-first audio signal.
Args:
path:
sample_rate:
downmix_to_mono:
Returns:
(audio signal, sample rate)
"""
def _decode_resample_by_ffmpeg(filename, sr):
"""decode, downmix, and resample audio file"""
channel_cmd = '-ac 1 ' if downmix_to_mono else '' # downmixing option
resampling_cmd = f'-ar {str(sr)}' if sr else '' # downsampling option
cmd = f"ffmpeg -i \"{filename}\" {channel_cmd} {resampling_cmd} -f wav -"
p = subprocess.Popen(cmd, shell=True, stdin=subprocess.PIPE, stdout=subprocess.PIPE, stderr=subprocess.PIPE)
out, err = p.communicate()
return out
src, sr = sf.read(io.BytesIO(_decode_resample_by_ffmpeg(path, sr=sample_rate)))
return src.T, sr
def _resample_load_librosa(path: str, sample_rate: int, downmix_to_mono: bool, **kwargs) -> Tuple[np.ndarray, int]:
"""
Decoding, downmixing, and downsampling by librosa.
Returns a channel-first audio signal.
"""
src, sr = librosa.load(path, sr=sample_rate, mono=downmix_to_mono, **kwargs)
return src, sr
def load_audio(
path: str or Path,
ch_format: str,
sample_rate: int = None,
downmix_to_mono: bool = False,
resample_by: str = 'ffmpeg',
**kwargs,
) -> Tuple[np.ndarray, int]:
"""A wrapper of librosa.load that:
- forces the returned audio to be 2-dim,
- defaults to sr=None, and
- defaults to downmix_to_mono=False.
The audio decoding is done by `audioread` or `soundfile` package and ultimately, often by ffmpeg.
The resampling is done by `librosa`'s child package `resampy`.
Args:
path: audio file path
ch_format: one of 'channels_first' or 'channels_last'
sample_rate: target sampling rate. if None, use the rate of the audio file
downmix_to_mono:
resample_by (str): 'librosa' or 'ffmpeg'. it decides backend for audio decoding and resampling.
**kwargs: keyword args for librosa.load - offset, duration, dtype, res_type.
Returns:
(audio, sr) tuple
"""
if ch_format not in (STR_CH_FIRST, STR_CH_LAST):
raise ValueError(f'ch_format is wrong here -> {ch_format}')
if os.stat(path).st_size > 8000:
if resample_by == 'librosa':
src, sr = _resample_load_librosa(path, sample_rate, downmix_to_mono, **kwargs)
elif resample_by == 'ffmpeg':
src, sr = _resample_load_ffmpeg(path, sample_rate, downmix_to_mono)
else:
raise NotImplementedError(f'resample_by: "{resample_by}" is not supposred yet')
else:
raise ValueError('Given audio is too short!')
return src, sr
# if src.ndim == 1:
# src = np.expand_dims(src, axis=0)
# # now always 2d and channels_first
# if ch_format == STR_CH_FIRST:
# return src, sr
# else:
# return src.T, sr
def ms(x):
"""Mean value of signal `x` squared.
:param x: Dynamic quantity.
:returns: Mean squared of `x`.
"""
return (np.abs(x)**2.0).mean()
def normalize(y, x=None):
"""normalize power in y to a (standard normal) white noise signal.
Optionally normalize to power in signal `x`.
#The mean power of a Gaussian with :math:`\\mu=0` and :math:`\\sigma=1` is 1.
"""
if x is not None:
x = ms(x)
else:
x = 1.0
return y * np.sqrt(x / ms(y))
def noise(N, color='white', state=None):
"""Noise generator.
:param N: Amount of samples.
:param color: Color of noise.
:param state: State of PRNG.
:type state: :class:`np.random.RandomState`
"""
try:
return _noise_generators[color](N, state)
except KeyError:
raise ValueError("Incorrect color.")
def white(N, state=None):
"""
White noise.
:param N: Amount of samples.
:param state: State of PRNG.
:type state: :class:`np.random.RandomState`
White noise has a constant power density. It's narrowband spectrum is therefore flat.
The power in white noise will increase by a factor of two for each octave band,
and therefore increases with 3 dB per octave.
"""
state = np.random.RandomState() if state is None else state
return state.randn(N)
def pink(N, state=None):
"""
Pink noise.
:param N: Amount of samples.
:param state: State of PRNG.
:type state: :class:`np.random.RandomState`
Pink noise has equal power in bands that are proportionally wide.
Power density decreases with 3 dB per octave.
"""
state = np.random.RandomState() if state is None else state
uneven = N % 2
X = state.randn(N // 2 + 1 + uneven) + 1j * state.randn(N // 2 + 1 + uneven)
S = np.sqrt(np.arange(len(X)) + 1.) # +1 to avoid divide by zero
y = (irfft(X / S)).real
if uneven:
y = y[:-1]
return normalize(y)
def blue(N, state=None):
"""
Blue noise.
:param N: Amount of samples.
:param state: State of PRNG.
:type state: :class:`np.random.RandomState`
Power increases with 6 dB per octave.
Power density increases with 3 dB per octave.
"""
state = np.random.RandomState() if state is None else state
uneven = N % 2
X = state.randn(N // 2 + 1 + uneven) + 1j * state.randn(N // 2 + 1 + uneven)
S = np.sqrt(np.arange(len(X))) # Filter
y = (irfft(X * S)).real
if uneven:
y = y[:-1]
return normalize(y)
def brown(N, state=None):
"""
Violet noise.
:param N: Amount of samples.
:param state: State of PRNG.
:type state: :class:`np.random.RandomState`
Power decreases with -3 dB per octave.
Power density decreases with 6 dB per octave.
"""
state = np.random.RandomState() if state is None else state
uneven = N % 2
X = state.randn(N // 2 + 1 + uneven) + 1j * state.randn(N // 2 + 1 + uneven)
S = (np.arange(len(X)) + 1) # Filter
y = (irfft(X / S)).real
if uneven:
y = y[:-1]
return normalize(y)
def violet(N, state=None):
"""
Violet noise. Power increases with 6 dB per octave.
:param N: Amount of samples.
:param state: State of PRNG.
:type state: :class:`np.random.RandomState`
Power increases with +9 dB per octave.
Power density increases with +6 dB per octave.
"""
state = np.random.RandomState() if state is None else state
uneven = N % 2
X = state.randn(N // 2 + 1 + uneven) + 1j * state.randn(N // 2 + 1 + uneven)
S = (np.arange(len(X))) # Filter
y = (irfft(X * S)).real
if uneven:
y = y[:-1]
return normalize(y)
_noise_generators = {
'white': white,
'pink': pink,
'blue': blue,
'brown': brown,
'violet': violet,
}
def noise_generator(N=44100, color='white', state=None):
"""Noise generator.
:param N: Amount of unique samples to generate.
:param color: Color of noise.
Generate `N` amount of unique samples and cycle over these samples.
"""
#yield from itertools.cycle(noise(N, color)) # Python 3.3
for sample in itertools.cycle(noise(N, color, state)):
yield sample
def heaviside(N):
"""Heaviside.
Returns the value 0 for `x < 0`, 1 for `x > 0`, and 1/2 for `x = 0`.
"""
return 0.5 * (np.sign(N) + 1) |