OMG_Seg / seg /datasets /vipseg.py
HarborYuan's picture
add omg code
b34d1d6
raw
history blame
8.65 kB
import logging
import os
from typing import List
import numpy as np
import pycocotools.mask as maskUtils
import mmcv
from mmengine import print_log, list_from_file, scandir, track_parallel_progress
from mmengine.dist import master_only, dist
from mmengine.fileio import join_path, exists, load, dump
from mmdet.datasets import BaseVideoDataset
from mmdet.registry import DATASETS
from seg.models.utils import INSTANCE_OFFSET_HB
from ext.class_names.VIPSeg import CLASSES_THING, CLASSES_STUFF, COCO_CLASSES, COCO_THINGS, COCO_STUFF, PALETTE
NO_OBJ = 0
NO_OBJ_HB = 255
NO_OBJ_BUG = (200,)
DIVISOR_PAN = 100
NUM_THING = 58
NUM_STUFF = 66
def to_coco(pan_map, divisor=INSTANCE_OFFSET_HB):
pan_new = - np.ones_like(pan_map)
vip2hb_thing = {itm['id'] + 1: idx for idx, itm in enumerate(CLASSES_THING)}
assert len(vip2hb_thing) == NUM_THING
vip2hb_stuff = {itm['id'] + 1: idx for idx, itm in enumerate(CLASSES_STUFF)}
assert len(vip2hb_stuff) == NUM_STUFF
for idx in np.unique(pan_map):
# 200 is a bug in vipseg dataset.
# Please refer to https://github.com/VIPSeg-Dataset/VIPSeg-Dataset/issues/1
if idx == NO_OBJ or idx in NO_OBJ_BUG:
pan_new[pan_map == idx] = NO_OBJ_HB * divisor
elif idx > 128:
cls_id = idx // DIVISOR_PAN
cls_new_id = vip2hb_thing[cls_id]
inst_id = idx % DIVISOR_PAN
pan_new[pan_map == idx] = cls_new_id * divisor + inst_id + 1
else:
cls_new_id = vip2hb_stuff[idx]
cls_new_id += NUM_THING
pan_new[pan_map == idx] = cls_new_id * divisor
assert -1 not in np.unique(pan_new)
return pan_new
def mask2bbox(mask):
bbox = np.zeros((4,), dtype=np.float32)
x_any = np.any(mask, axis=0)
y_any = np.any(mask, axis=1)
x = np.where(x_any)[0]
y = np.where(y_any)[0]
if len(x) > 0 and len(y) > 0:
bbox = np.array((x[0], y[0], x[-1], y[-1]), dtype=np.float32)
return bbox
def video_parser(params):
seq_id, vid_folder, ann_folder = params
images = []
assert os.path.basename(vid_folder) == os.path.basename(ann_folder)
_tmp_img_id = -1
imgs_cur = sorted(list(map(
lambda x: str(x), scandir(vid_folder, recursive=False, suffix='.jpg')
)))
pans_cur = sorted(list(map(
lambda x: str(x), scandir(ann_folder, recursive=False, suffix='.png')
)))
for img_cur, pan_cur in zip(imgs_cur, pans_cur):
assert img_cur.split('.')[0] == pan_cur.split('.')[0]
_tmp_img_id += 1
img_id = _tmp_img_id
item_full = os.path.join(vid_folder, img_cur)
inst_map = os.path.join(ann_folder, pan_cur)
img_dict = {
'img_path': item_full,
'ann_path': inst_map,
}
assert os.path.exists(img_dict['img_path'])
assert os.path.exists(img_dict['ann_path'])
instances = []
ann_map = mmcv.imread(img_dict['ann_path'], flag='unchanged').astype(np.uint32)
img_dict['height'], img_dict['width'] = ann_map.shape
pan_map = to_coco(ann_map, INSTANCE_OFFSET_HB)
for pan_seg_id in np.unique(pan_map):
label = pan_seg_id // INSTANCE_OFFSET_HB
if label == NO_OBJ_HB:
continue
instance = {}
mask = (pan_map == pan_seg_id).astype(np.uint8)
instance['instance_id'] = pan_seg_id
instance['bbox'] = mask2bbox(mask)
instance['bbox_label'] = label
instance['ignore_flag'] = 0
instance['mask'] = maskUtils.encode(np.asfortranarray(mask))
instance['mask']['counts'] = instance['mask']['counts'].decode()
instances.append(instance)
img_dict['instances'] = instances
img_dict['video_id'] = seq_id
img_dict['frame_id'] = img_id
img_dict['img_id'] = seq_id * 10000 + img_id
images.append(img_dict)
return {
'video_id': seq_id,
'images': images,
'video_length': len(images)
}
@DATASETS.register_module()
class VIPSegDataset(BaseVideoDataset):
METAINFO = {
'classes': COCO_CLASSES,
'thing_classes': COCO_THINGS,
'stuff_classes': COCO_STUFF,
'palette': PALETTE,
}
def __init__(
self,
*args,
img_map_suffix: str = '.jpg',
seg_map_suffix: str = '.png',
**kwargs
):
self.img_map_suffix = img_map_suffix
self.seg_map_suffix = seg_map_suffix
super().__init__(*args, **kwargs)
@master_only
def build_cache(self, ann_json_path, video_folders, ann_folders) -> None:
vid_ids = range(len(video_folders))
data_list = track_parallel_progress(
video_parser,
tasks=list(zip(vid_ids, video_folders, ann_folders)),
nproc=20,
keep_order=False,
)
data_list = sorted(data_list, key=lambda x: x['video_id'])
dump(data_list, ann_json_path)
def load_data_list(self) -> List[dict]:
video_folders = list_from_file(self.ann_file, prefix=self.data_prefix['img'])
ann_folders = list_from_file(self.ann_file, prefix=self.data_prefix['seg'])
assert len(video_folders) == len(ann_folders)
print_log(f"#videos : {len(video_folders)} ",
logger='current',
level=logging.INFO)
split = os.path.basename(self.ann_file).split('.')[0]
ann_json_path = f"{split}_annotations.json"
ann_json_path = join_path(self.data_root, ann_json_path)
if not exists(ann_json_path):
self.build_cache(ann_json_path, video_folders, ann_folders)
dist.barrier()
raw_data_list = load(ann_json_path)
data_list = []
for raw_data_info in raw_data_list:
data_info = self.parse_data_info(raw_data_info)
data_list.append(data_info)
vid_len_list = [itm['video_length'] for itm in data_list]
max_vid_len = max(vid_len_list)
min_vid_len = min(vid_len_list)
print_log(
f"Max video len : {max_vid_len}; "
f"Min video len : {min_vid_len}."
,
logger='current',
level=logging.INFO
)
return data_list
def parse_data_info(self, raw_data_info: dict) -> dict:
data_info = {
'video_id': raw_data_info['video_id'],
'video_length': raw_data_info['video_length']
}
images = []
for raw_img_data_info in raw_data_info['images']:
img_data_info = {
'img_path': raw_img_data_info['img_path'],
'height': raw_img_data_info['height'],
'width': raw_img_data_info['width'],
'video_id': raw_img_data_info['video_id'],
'frame_id': raw_img_data_info['frame_id'],
'img_id': raw_img_data_info['img_id']
}
instances = []
segments_info = []
for ann in raw_img_data_info['instances']:
instance = {}
category_id = ann['bbox_label']
bbox = ann['bbox']
is_thing = category_id < NUM_THING
if is_thing:
instance['bbox'] = bbox
instance['bbox_label'] = category_id
instance['ignore_flag'] = ann['ignore_flag']
instance['instance_id'] = ann['instance_id']
segment_info = {
'mask': ann['mask'],
'category': category_id,
'is_thing': is_thing
}
segments_info.append(segment_info)
if len(instance) > 0 and is_thing:
instances.append(instance)
img_data_info['instances'] = instances
img_data_info['segments_info'] = segments_info
images.append(img_data_info)
data_info['images'] = images
return data_info
def filter_data(self) -> List[dict]:
"""Filter image annotations according to filter_cfg.
Returns:
list[int]: Filtered results.
"""
if self.test_mode:
return self.data_list
num_imgs_before_filter = sum([len(info['images']) for info in self.data_list])
num_imgs_after_filter = num_imgs_before_filter
new_data_list = self.data_list
print_log(
'The number of samples before and after filtering: '
f'{num_imgs_before_filter} / {num_imgs_after_filter}', 'current')
return new_data_list