Spaces:
Sleeping
Sleeping
import json | |
import logging | |
import os | |
import pathlib | |
import re | |
from copy import deepcopy | |
from pathlib import Path | |
from typing import Any, Dict, Optional, Tuple, Union | |
import torch | |
from .constants import OPENAI_DATASET_MEAN, OPENAI_DATASET_STD | |
from .model import CLIP, CustomTextCLIP, convert_weights_to_lp, convert_to_custom_text_state_dict,\ | |
resize_pos_embed, get_cast_dtype | |
from .coca_model import CoCa | |
from .loss import ClipLoss, DistillClipLoss, CoCaLoss | |
from .openai import load_openai_model | |
from .pretrained import is_pretrained_cfg, get_pretrained_cfg, download_pretrained,\ | |
list_pretrained_tags_by_model, download_pretrained_from_hf | |
from .transform import image_transform, AugmentationCfg | |
from .tokenizer import HFTokenizer, tokenize | |
HF_HUB_PREFIX = 'hf-hub:' | |
_MODEL_CONFIG_PATHS = [Path(__file__).parent / f"model_configs/"] | |
_MODEL_CONFIGS = {} # directory (model_name: config) of model architecture configs | |
def _natural_key(string_): | |
return [int(s) if s.isdigit() else s for s in re.split(r'(\d+)', string_.lower())] | |
def _rescan_model_configs(): | |
global _MODEL_CONFIGS | |
config_ext = ('.json',) | |
config_files = [] | |
for config_path in _MODEL_CONFIG_PATHS: | |
if config_path.is_file() and config_path.suffix in config_ext: | |
config_files.append(config_path) | |
elif config_path.is_dir(): | |
for ext in config_ext: | |
config_files.extend(config_path.glob(f'*{ext}')) | |
for cf in config_files: | |
with open(cf, 'r') as f: | |
model_cfg = json.load(f) | |
if all(a in model_cfg for a in ('embed_dim', 'vision_cfg', 'text_cfg')): | |
_MODEL_CONFIGS[cf.stem] = model_cfg | |
_MODEL_CONFIGS = {k: v for k, v in sorted(_MODEL_CONFIGS.items(), key=lambda x: _natural_key(x[0]))} | |
_rescan_model_configs() # initial populate of model config registry | |
def list_models(): | |
""" enumerate available model architectures based on config files """ | |
return list(_MODEL_CONFIGS.keys()) | |
def add_model_config(path): | |
""" add model config path or file and update registry """ | |
if not isinstance(path, Path): | |
path = Path(path) | |
_MODEL_CONFIG_PATHS.append(path) | |
_rescan_model_configs() | |
def get_model_config(model_name): | |
if model_name in _MODEL_CONFIGS: | |
return deepcopy(_MODEL_CONFIGS[model_name]) | |
else: | |
return None | |
def get_tokenizer(model_name): | |
if model_name.startswith(HF_HUB_PREFIX): | |
tokenizer = HFTokenizer(model_name[len(HF_HUB_PREFIX):]) | |
else: | |
config = get_model_config(model_name) | |
tokenizer = HFTokenizer( | |
config['text_cfg']['hf_tokenizer_name']) if 'hf_tokenizer_name' in config['text_cfg'] else tokenize | |
return tokenizer | |
def load_state_dict(checkpoint_path: str, map_location='cpu'): | |
checkpoint = torch.load(checkpoint_path, map_location=map_location) | |
if isinstance(checkpoint, dict) and 'state_dict' in checkpoint: | |
state_dict = checkpoint['state_dict'] | |
else: | |
state_dict = checkpoint | |
if next(iter(state_dict.items()))[0].startswith('module'): | |
state_dict = {k[7:]: v for k, v in state_dict.items()} | |
return state_dict | |
def load_checkpoint(model, checkpoint_path, strict=True): | |
state_dict = load_state_dict(checkpoint_path) | |
# detect old format and make compatible with new format | |
if 'positional_embedding' in state_dict and not hasattr(model, 'positional_embedding'): | |
state_dict = convert_to_custom_text_state_dict(state_dict) | |
resize_pos_embed(state_dict, model) | |
incompatible_keys = model.load_state_dict(state_dict, strict=strict) | |
return incompatible_keys | |
def create_model( | |
model_name: str, | |
pretrained: Optional[str] = None, | |
precision: str = 'fp32', | |
device: Union[str, torch.device] = 'cpu', | |
jit: bool = False, | |
force_quick_gelu: bool = False, | |
force_custom_text: bool = False, | |
force_patch_dropout: Optional[float] = None, | |
force_image_size: Optional[Union[int, Tuple[int, int]]] = None, | |
pretrained_image: bool = False, | |
pretrained_hf: bool = True, | |
cache_dir: Optional[str] = None, | |
output_dict: Optional[bool] = None, | |
require_pretrained: bool = False, | |
logger: logging.Logger = logging, | |
): | |
has_hf_hub_prefix = model_name.startswith(HF_HUB_PREFIX) | |
if has_hf_hub_prefix: | |
model_id = model_name[len(HF_HUB_PREFIX):] | |
checkpoint_path = download_pretrained_from_hf(model_id, cache_dir=cache_dir) | |
config_path = download_pretrained_from_hf(model_id, filename='open_clip_config.json', cache_dir=cache_dir) | |
with open(config_path, 'r', encoding='utf-8') as f: | |
config = json.load(f) | |
pretrained_cfg = config['preprocess_cfg'] | |
model_cfg = config['model_cfg'] | |
else: | |
model_name = model_name.replace('/', '-') # for callers using old naming with / in ViT names | |
checkpoint_path = None | |
pretrained_cfg = {} | |
model_cfg = None | |
if isinstance(device, str): | |
device = torch.device(device) | |
if pretrained and pretrained.lower() == 'openai': | |
logger.info(f'Loading pretrained {model_name} from OpenAI.') | |
model = load_openai_model( | |
model_name, | |
precision=precision, | |
device=device, | |
cache_dir=cache_dir, | |
) | |
else: | |
model_cfg = model_cfg or get_model_config(model_name) | |
if model_cfg is not None: | |
logger.info(f'Loaded {model_name} model config.') | |
else: | |
logger.error(f'Model config for {model_name} not found; available models {list_models()}.') | |
raise RuntimeError(f'Model config for {model_name} not found.') | |
if force_quick_gelu: | |
# override for use of QuickGELU on non-OpenAI transformer models | |
model_cfg["quick_gelu"] = True | |
if force_patch_dropout is not None: | |
# override the default patch dropout value | |
model_cfg["vision_cfg"]["patch_dropout"] = force_patch_dropout | |
if force_image_size is not None: | |
# override model config's image size | |
model_cfg["vision_cfg"]["image_size"] = force_image_size | |
is_timm_model = 'timm_model_name' in model_cfg.get('vision_cfg', {}) | |
if pretrained_image: | |
if is_timm_model: | |
# pretrained weight loading for timm models set via vision_cfg | |
model_cfg['vision_cfg']['timm_model_pretrained'] = True | |
else: | |
assert False, 'pretrained image towers currently only supported for timm models' | |
# cast_dtype set for fp16 and bf16 (manual mixed-precision), not set for 'amp' or 'pure' modes | |
cast_dtype = get_cast_dtype(precision) | |
is_hf_model = 'hf_model_name' in model_cfg.get('text_cfg', {}) | |
custom_text = model_cfg.pop('custom_text', False) or force_custom_text or is_hf_model | |
if custom_text: | |
if is_hf_model: | |
model_cfg['text_cfg']['hf_model_pretrained'] = pretrained_hf | |
if "coca" in model_name: | |
model = CoCa(**model_cfg, cast_dtype=cast_dtype) | |
else: | |
model = CustomTextCLIP(**model_cfg, cast_dtype=cast_dtype) | |
else: | |
model = CLIP(**model_cfg, cast_dtype=cast_dtype) | |
if precision in ("fp16", "bf16"): | |
dtype = torch.float16 if 'fp16' in precision else torch.bfloat16 | |
# manual mixed precision that matches original OpenAI behaviour | |
if is_timm_model: | |
# FIXME this is a bit janky, create timm based model in low-precision and | |
# then cast only LayerNormFp32 instances back to float32 so they don't break. | |
# Why? The convert_weights_to_lp fn only works with native models. | |
model.to(device=device, dtype=dtype) | |
from .transformer import LayerNormFp32 | |
def _convert_ln(m): | |
if isinstance(m, LayerNormFp32): | |
m.weight.data = m.weight.data.to(torch.float32) | |
m.bias.data = m.bias.data.to(torch.float32) | |
model.apply(_convert_ln) | |
else: | |
model.to(device=device) | |
convert_weights_to_lp(model, dtype=dtype) | |
elif precision in ("pure_fp16", "pure_bf16"): | |
dtype = torch.float16 if 'fp16' in precision else torch.bfloat16 | |
model.to(device=device, dtype=dtype) | |
else: | |
model.to(device=device) | |
pretrained_loaded = False | |
if pretrained: | |
checkpoint_path = '' | |
pretrained_cfg = get_pretrained_cfg(model_name, pretrained) | |
if pretrained_cfg: | |
checkpoint_path = download_pretrained(pretrained_cfg, cache_dir=cache_dir) | |
elif os.path.exists(pretrained): | |
checkpoint_path = pretrained | |
if checkpoint_path: | |
logger.info(f'Loading pretrained {model_name} weights ({pretrained}).') | |
load_checkpoint(model, checkpoint_path) | |
else: | |
error_str = ( | |
f'Pretrained weights ({pretrained}) not found for model {model_name}.' | |
f'Available pretrained tags ({list_pretrained_tags_by_model(model_name)}.') | |
logger.warning(error_str) | |
raise RuntimeError(error_str) | |
pretrained_loaded = True | |
elif has_hf_hub_prefix: | |
logger.info(f'Loading pretrained {model_name} weights ({pretrained}).') | |
load_checkpoint(model, checkpoint_path) | |
pretrained_loaded = True | |
if require_pretrained and not pretrained_loaded: | |
# callers of create_model_from_pretrained always expect pretrained weights | |
raise RuntimeError( | |
f'Pretrained weights were required for (model: {model_name}, pretrained: {pretrained}) but not loaded.') | |
# set image / mean metadata from pretrained_cfg if available, or use default | |
model.visual.image_mean = pretrained_cfg.get('mean', None) or OPENAI_DATASET_MEAN | |
model.visual.image_std = pretrained_cfg.get('std', None) or OPENAI_DATASET_STD | |
if output_dict and hasattr(model, "output_dict"): | |
model.output_dict = True | |
if jit: | |
model = torch.jit.script(model) | |
return model | |
def create_loss(args): | |
if args.distill: | |
return DistillClipLoss( | |
local_loss=args.local_loss, | |
gather_with_grad=args.gather_with_grad, | |
cache_labels=True, | |
rank=args.rank, | |
world_size=args.world_size, | |
use_horovod=args.horovod, | |
) | |
elif "coca" in args.model.lower(): | |
return CoCaLoss( | |
caption_loss_weight=args.coca_caption_loss_weight, | |
clip_loss_weight=args.coca_contrastive_loss_weight, | |
local_loss=args.local_loss, | |
gather_with_grad=args.gather_with_grad, | |
cache_labels=True, | |
rank=args.rank, | |
world_size=args.world_size, | |
use_horovod=args.horovod, | |
) | |
return ClipLoss( | |
local_loss=args.local_loss, | |
gather_with_grad=args.gather_with_grad, | |
cache_labels=True, | |
rank=args.rank, | |
world_size=args.world_size, | |
use_horovod=args.horovod, | |
) | |
def create_model_and_transforms( | |
model_name: str, | |
pretrained: Optional[str] = None, | |
precision: str = 'fp32', | |
device: Union[str, torch.device] = 'cpu', | |
jit: bool = False, | |
force_quick_gelu: bool = False, | |
force_custom_text: bool = False, | |
force_patch_dropout: Optional[float] = None, | |
force_image_size: Optional[Union[int, Tuple[int, int]]] = None, | |
pretrained_image: bool = False, | |
pretrained_hf: bool = True, | |
image_mean: Optional[Tuple[float, ...]] = None, | |
image_std: Optional[Tuple[float, ...]] = None, | |
aug_cfg: Optional[Union[Dict[str, Any], AugmentationCfg]] = None, | |
cache_dir: Optional[str] = None, | |
output_dict: Optional[bool] = None, | |
logger: logging.Logger = logging, | |
): | |
model = create_model( | |
model_name, | |
pretrained, | |
precision=precision, | |
device=device, | |
jit=jit, | |
force_quick_gelu=force_quick_gelu, | |
force_custom_text=force_custom_text, | |
force_patch_dropout=force_patch_dropout, | |
force_image_size=force_image_size, | |
pretrained_image=pretrained_image, | |
pretrained_hf=pretrained_hf, | |
cache_dir=cache_dir, | |
output_dict=output_dict, | |
logger=logger, | |
) | |
image_mean = image_mean or getattr(model.visual, 'image_mean', None) | |
image_std = image_std or getattr(model.visual, 'image_std', None) | |
preprocess_train = image_transform( | |
model.visual.image_size, | |
is_train=True, | |
mean=image_mean, | |
std=image_std, | |
aug_cfg=aug_cfg, | |
) | |
preprocess_val = image_transform( | |
model.visual.image_size, | |
is_train=False, | |
mean=image_mean, | |
std=image_std, | |
) | |
return model, preprocess_train, preprocess_val | |
def create_model_from_pretrained( | |
model_name: str, | |
pretrained: Optional[str] = None, | |
precision: str = 'fp32', | |
device: Union[str, torch.device] = 'cpu', | |
jit: bool = False, | |
force_quick_gelu: bool = False, | |
force_custom_text: bool = False, | |
force_image_size: Optional[Union[int, Tuple[int, int]]] = None, | |
return_transform: bool = True, | |
image_mean: Optional[Tuple[float, ...]] = None, | |
image_std: Optional[Tuple[float, ...]] = None, | |
cache_dir: Optional[str] = None, | |
logger: logging.Logger = logging, | |
): | |
model = create_model( | |
model_name, | |
pretrained, | |
precision=precision, | |
device=device, | |
jit=jit, | |
force_quick_gelu=force_quick_gelu, | |
force_custom_text=force_custom_text, | |
force_image_size=force_image_size, | |
cache_dir=cache_dir, | |
require_pretrained=True, | |
logger=logger, | |
) | |
if not return_transform: | |
return model | |
image_mean = image_mean or getattr(model.visual, 'image_mean', None) | |
image_std = image_std or getattr(model.visual, 'image_std', None) | |
preprocess = image_transform( | |
model.visual.image_size, | |
is_train=False, | |
mean=image_mean, | |
std=image_std, | |
) | |
return model, preprocess | |