Spaces:
Runtime error
Runtime error
File size: 11,634 Bytes
5effe6a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 |
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# RAPTOR: Recursive Abstractive Processing for Tree-Organized Retrieval\n",
"\n",
"This notebook shows how to use an implementation of RAPTOR with llama-index, leveraging the RAPTOR llama-pack.\n",
"\n",
"RAPTOR works by recursively clustering and summarizing clusters in layers for retrieval.\n",
"\n",
"There two retrieval modes:\n",
"- tree_traversal -- traversing the tree of clusters, performing top-k at each level in the tree.\n",
"- collapsed -- treat the entire tree as a giant pile of nodes, perform simple top-k.\n",
"\n",
"See [the paper](https://arxiv.org/abs/2401.18059) for full algorithm details."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Setup"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"!pip install llama-index llama-index-packs-raptor llama-index-vector-stores-qdrant"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from llama_index.packs.raptor import RaptorPack\n",
"\n",
"# optionally download the pack to inspect/modify it yourself!\n",
"# from llama_index.core.llama_pack import download_llama_pack\n",
"# RaptorPack = download_llama_pack(\"RaptorPack\", \"./raptor_pack\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Will not apply HSTS. The HSTS database must be a regular and non-world-writable file.\n",
"ERROR: could not open HSTS store at '/home/loganm/.wget-hsts'. HSTS will be disabled.\n",
"--2024-02-29 22:16:11-- https://arxiv.org/pdf/2401.18059.pdf\n",
"Resolving arxiv.org (arxiv.org)... 151.101.3.42, 151.101.195.42, 151.101.131.42, ...\n",
"Connecting to arxiv.org (arxiv.org)|151.101.3.42|:443... connected.\n",
"HTTP request sent, awaiting response... 200 OK\n",
"Length: 2547113 (2.4M) [application/pdf]\n",
"Saving to: ‘./raptor_paper.pdf’\n",
"\n",
"./raptor_paper.pdf 100%[===================>] 2.43M 12.5MB/s in 0.2s \n",
"\n",
"2024-02-29 22:16:12 (12.5 MB/s) - ‘./raptor_paper.pdf’ saved [2547113/2547113]\n",
"\n"
]
}
],
"source": [
"!wget https://arxiv.org/pdf/2401.18059.pdf -O ./raptor_paper.pdf"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import os\n",
"\n",
"os.environ[\"OPENAI_API_KEY\"] = \"sk-...\""
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Constructing the Clusters/Hierarchy Tree"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import nest_asyncio\n",
"\n",
"nest_asyncio.apply()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from llama_index.core import SimpleDirectoryReader\n",
"\n",
"documents = SimpleDirectoryReader(input_files=[\"./raptor_paper.pdf\"]).load_data()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Generating embeddings for level 0.\n",
"Performing clustering for level 0.\n",
"Generating summaries for level 0 with 10 clusters.\n",
"Level 0 created summaries/clusters: 10\n",
"Generating embeddings for level 1.\n",
"Performing clustering for level 1.\n",
"Generating summaries for level 1 with 1 clusters.\n",
"Level 1 created summaries/clusters: 1\n",
"Generating embeddings for level 2.\n",
"Performing clustering for level 2.\n",
"Generating summaries for level 2 with 1 clusters.\n",
"Level 2 created summaries/clusters: 1\n"
]
}
],
"source": [
"from llama_index.core.node_parser import SentenceSplitter\n",
"from llama_index.llms.openai import OpenAI\n",
"from llama_index.embeddings.openai import OpenAIEmbedding\n",
"from llama_index.vector_stores.chroma import ChromaVectorStore\n",
"import chromadb\n",
"\n",
"client = chromadb.PersistentClient(path=\"./raptor_paper_db\")\n",
"collection = client.get_or_create_collection(\"raptor\")\n",
"\n",
"vector_store = ChromaVectorStore(chroma_collection=collection)\n",
"\n",
"raptor_pack = RaptorPack(\n",
" documents,\n",
" embed_model=OpenAIEmbedding(\n",
" model=\"text-embedding-3-small\"\n",
" ), # used for embedding clusters\n",
" llm=OpenAI(model=\"gpt-3.5-turbo\", temperature=0.1), # used for generating summaries\n",
" vector_store=vector_store, # used for storage\n",
" similarity_top_k=2, # top k for each layer, or overall top-k for collapsed\n",
" mode=\"collapsed\", # sets default mode\n",
" transformations=[\n",
" SentenceSplitter(chunk_size=400, chunk_overlap=50)\n",
" ], # transformations applied for ingestion\n",
")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Retrieval"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"2\n",
"Specifically, RAPTOR’s F-1 scores are at least 1.8% points higher than DPR and at least 5.3% points\n",
"higher than BM25.\n",
"Retriever GPT-3 F-1 Match GPT-4 F-1 Match UnifiedQA F-1 Match\n",
"Title + Abstract 25.2 22.2 17.5\n",
"BM25 46.6 50.2 26.4\n",
"DPR 51.3 53.0 32.1\n",
"RAPTOR 53.1 55.7 36.6\n",
"Table 4: Comparison of accuracies on the QuAL-\n",
"ITY dev dataset for two different language mod-\n",
"els (GPT-3, UnifiedQA 3B) using various retrieval\n",
"methods. RAPTOR outperforms the baselines of\n",
"BM25 and DPR by at least 2.0% in accuracy.\n",
"Model GPT-3 Acc. UnifiedQA Acc.\n",
"BM25 57.3 49.9\n",
"DPR 60.4 53.9\n",
"RAPTOR 62.4 56.6\n",
"Table 5: Results on F-1 Match scores of various\n",
"models on the QASPER dataset.\n",
"Model F-1 Match\n",
"LongT5 XL (Guo et al., 2022) 53.1\n",
"CoLT5 XL (Ainslie et al., 2023) 53.9\n",
"RAPTOR + GPT-4 55.7Comparison to State-of-the-art Systems\n",
"Building upon our controlled comparisons,\n",
"we examine RAPTOR’s performance relative\n",
"to other state-of-the-art models.\n"
]
}
],
"source": [
"nodes = raptor_pack.run(\"What baselines is raptor compared against?\", mode=\"collapsed\")\n",
"print(len(nodes))\n",
"print(nodes[0].text)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Retrieved parent IDs from level 2: ['cc3b3f41-f4ca-4020-b11f-be7e0ce04c4f']\n",
"Retrieved 1 from parents at level 2.\n",
"Retrieved parent IDs from level 1: ['a4ca9426-a312-4a01-813a-c9b02aefc7e8']\n",
"Retrieved 2 from parents at level 1.\n",
"Retrieved parent IDs from level 0: ['63126782-2778-449f-99c0-1e8fd90caa36', 'd8f68d31-d878-41f1-aeb6-a7dde8ed5143']\n",
"Retrieved 4 from parents at level 0.\n",
"4\n",
"Specifically, RAPTOR’s F-1 scores are at least 1.8% points higher than DPR and at least 5.3% points\n",
"higher than BM25.\n",
"Retriever GPT-3 F-1 Match GPT-4 F-1 Match UnifiedQA F-1 Match\n",
"Title + Abstract 25.2 22.2 17.5\n",
"BM25 46.6 50.2 26.4\n",
"DPR 51.3 53.0 32.1\n",
"RAPTOR 53.1 55.7 36.6\n",
"Table 4: Comparison of accuracies on the QuAL-\n",
"ITY dev dataset for two different language mod-\n",
"els (GPT-3, UnifiedQA 3B) using various retrieval\n",
"methods. RAPTOR outperforms the baselines of\n",
"BM25 and DPR by at least 2.0% in accuracy.\n",
"Model GPT-3 Acc. UnifiedQA Acc.\n",
"BM25 57.3 49.9\n",
"DPR 60.4 53.9\n",
"RAPTOR 62.4 56.6\n",
"Table 5: Results on F-1 Match scores of various\n",
"models on the QASPER dataset.\n",
"Model F-1 Match\n",
"LongT5 XL (Guo et al., 2022) 53.1\n",
"CoLT5 XL (Ainslie et al., 2023) 53.9\n",
"RAPTOR + GPT-4 55.7Comparison to State-of-the-art Systems\n",
"Building upon our controlled comparisons,\n",
"we examine RAPTOR’s performance relative\n",
"to other state-of-the-art models.\n"
]
}
],
"source": [
"nodes = raptor_pack.run(\n",
" \"What baselines is raptor compared against?\", mode=\"tree_traversal\"\n",
")\n",
"print(len(nodes))\n",
"print(nodes[0].text)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Loading\n",
"\n",
"Since we saved to a vector store, we can also use it again! (For local vector stores, there is a `persist` and `from_persist_dir` method on the retriever)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from llama_index.packs.raptor import RaptorRetriever\n",
"\n",
"retriever = RaptorRetriever(\n",
" [],\n",
" embed_model=OpenAIEmbedding(\n",
" model=\"text-embedding-3-small\"\n",
" ), # used for embedding clusters\n",
" llm=OpenAI(model=\"gpt-3.5-turbo\", temperature=0.1), # used for generating summaries\n",
" vector_store=vector_store, # used for storage\n",
" similarity_top_k=2, # top k for each layer, or overall top-k for collapsed\n",
" mode=\"tree_traversal\", # sets default mode\n",
")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# if using a default vector store\n",
"# retriever.persist(\"./persist\")\n",
"# retriever = RaptorRetriever.from_persist_dir(\"./persist\", ...)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Query Engine"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from llama_index.core.query_engine import RetrieverQueryEngine\n",
"\n",
"query_engine = RetrieverQueryEngine.from_args(\n",
" retriever, llm=OpenAI(model=\"gpt-3.5-turbo\", temperature=0.1)\n",
")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"response = query_engine.query(\"What baselines was RAPTOR compared against?\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"BM25 and DPR\n"
]
}
],
"source": [
"print(str(response))"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "llama-index-4aB9_5sa-py3.10",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3"
}
},
"nbformat": 4,
"nbformat_minor": 2
}
|