Spaces:
Running
Running
File size: 11,642 Bytes
c59c099 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 |
import cv2
import math
import numpy as np
import random
import torch
from collections import OrderedDict
from os import path as osp
from basicsr.archs import build_network
from basicsr.losses import build_loss
from basicsr.losses.gan_loss import g_path_regularize, r1_penalty
from basicsr.utils import imwrite, tensor2img
from basicsr.utils.registry import MODEL_REGISTRY
from .base_model import BaseModel
@MODEL_REGISTRY.register()
class StyleGAN2Model(BaseModel):
"""StyleGAN2 model."""
def __init__(self, opt):
super(StyleGAN2Model, self).__init__(opt)
# define network net_g
self.net_g = build_network(opt['network_g'])
self.net_g = self.model_to_device(self.net_g)
self.print_network(self.net_g)
# load pretrained model
load_path = self.opt['path'].get('pretrain_network_g', None)
if load_path is not None:
param_key = self.opt['path'].get('param_key_g', 'params')
self.load_network(self.net_g, load_path, self.opt['path'].get('strict_load_g', True), param_key)
# latent dimension: self.num_style_feat
self.num_style_feat = opt['network_g']['num_style_feat']
num_val_samples = self.opt['val'].get('num_val_samples', 16)
self.fixed_sample = torch.randn(num_val_samples, self.num_style_feat, device=self.device)
if self.is_train:
self.init_training_settings()
def init_training_settings(self):
train_opt = self.opt['train']
# define network net_d
self.net_d = build_network(self.opt['network_d'])
self.net_d = self.model_to_device(self.net_d)
self.print_network(self.net_d)
# load pretrained model
load_path = self.opt['path'].get('pretrain_network_d', None)
if load_path is not None:
param_key = self.opt['path'].get('param_key_d', 'params')
self.load_network(self.net_d, load_path, self.opt['path'].get('strict_load_d', True), param_key)
# define network net_g with Exponential Moving Average (EMA)
# net_g_ema only used for testing on one GPU and saving, do not need to
# wrap with DistributedDataParallel
self.net_g_ema = build_network(self.opt['network_g']).to(self.device)
# load pretrained model
load_path = self.opt['path'].get('pretrain_network_g', None)
if load_path is not None:
self.load_network(self.net_g_ema, load_path, self.opt['path'].get('strict_load_g', True), 'params_ema')
else:
self.model_ema(0) # copy net_g weight
self.net_g.train()
self.net_d.train()
self.net_g_ema.eval()
# define losses
# gan loss (wgan)
self.cri_gan = build_loss(train_opt['gan_opt']).to(self.device)
# regularization weights
self.r1_reg_weight = train_opt['r1_reg_weight'] # for discriminator
self.path_reg_weight = train_opt['path_reg_weight'] # for generator
self.net_g_reg_every = train_opt['net_g_reg_every']
self.net_d_reg_every = train_opt['net_d_reg_every']
self.mixing_prob = train_opt['mixing_prob']
self.mean_path_length = 0
# set up optimizers and schedulers
self.setup_optimizers()
self.setup_schedulers()
def setup_optimizers(self):
train_opt = self.opt['train']
# optimizer g
net_g_reg_ratio = self.net_g_reg_every / (self.net_g_reg_every + 1)
if self.opt['network_g']['type'] == 'StyleGAN2GeneratorC':
normal_params = []
style_mlp_params = []
modulation_conv_params = []
for name, param in self.net_g.named_parameters():
if 'modulation' in name:
normal_params.append(param)
elif 'style_mlp' in name:
style_mlp_params.append(param)
elif 'modulated_conv' in name:
modulation_conv_params.append(param)
else:
normal_params.append(param)
optim_params_g = [
{ # add normal params first
'params': normal_params,
'lr': train_opt['optim_g']['lr']
},
{
'params': style_mlp_params,
'lr': train_opt['optim_g']['lr'] * 0.01
},
{
'params': modulation_conv_params,
'lr': train_opt['optim_g']['lr'] / 3
}
]
else:
normal_params = []
for name, param in self.net_g.named_parameters():
normal_params.append(param)
optim_params_g = [{ # add normal params first
'params': normal_params,
'lr': train_opt['optim_g']['lr']
}]
optim_type = train_opt['optim_g'].pop('type')
lr = train_opt['optim_g']['lr'] * net_g_reg_ratio
betas = (0**net_g_reg_ratio, 0.99**net_g_reg_ratio)
self.optimizer_g = self.get_optimizer(optim_type, optim_params_g, lr, betas=betas)
self.optimizers.append(self.optimizer_g)
# optimizer d
net_d_reg_ratio = self.net_d_reg_every / (self.net_d_reg_every + 1)
if self.opt['network_d']['type'] == 'StyleGAN2DiscriminatorC':
normal_params = []
linear_params = []
for name, param in self.net_d.named_parameters():
if 'final_linear' in name:
linear_params.append(param)
else:
normal_params.append(param)
optim_params_d = [
{ # add normal params first
'params': normal_params,
'lr': train_opt['optim_d']['lr']
},
{
'params': linear_params,
'lr': train_opt['optim_d']['lr'] * (1 / math.sqrt(512))
}
]
else:
normal_params = []
for name, param in self.net_d.named_parameters():
normal_params.append(param)
optim_params_d = [{ # add normal params first
'params': normal_params,
'lr': train_opt['optim_d']['lr']
}]
optim_type = train_opt['optim_d'].pop('type')
lr = train_opt['optim_d']['lr'] * net_d_reg_ratio
betas = (0**net_d_reg_ratio, 0.99**net_d_reg_ratio)
self.optimizer_d = self.get_optimizer(optim_type, optim_params_d, lr, betas=betas)
self.optimizers.append(self.optimizer_d)
def feed_data(self, data):
self.real_img = data['gt'].to(self.device)
def make_noise(self, batch, num_noise):
if num_noise == 1:
noises = torch.randn(batch, self.num_style_feat, device=self.device)
else:
noises = torch.randn(num_noise, batch, self.num_style_feat, device=self.device).unbind(0)
return noises
def mixing_noise(self, batch, prob):
if random.random() < prob:
return self.make_noise(batch, 2)
else:
return [self.make_noise(batch, 1)]
def optimize_parameters(self, current_iter):
loss_dict = OrderedDict()
# optimize net_d
for p in self.net_d.parameters():
p.requires_grad = True
self.optimizer_d.zero_grad()
batch = self.real_img.size(0)
noise = self.mixing_noise(batch, self.mixing_prob)
fake_img, _ = self.net_g(noise)
fake_pred = self.net_d(fake_img.detach())
real_pred = self.net_d(self.real_img)
# wgan loss with softplus (logistic loss) for discriminator
l_d = self.cri_gan(real_pred, True, is_disc=True) + self.cri_gan(fake_pred, False, is_disc=True)
loss_dict['l_d'] = l_d
# In wgan, real_score should be positive and fake_score should be
# negative
loss_dict['real_score'] = real_pred.detach().mean()
loss_dict['fake_score'] = fake_pred.detach().mean()
l_d.backward()
if current_iter % self.net_d_reg_every == 0:
self.real_img.requires_grad = True
real_pred = self.net_d(self.real_img)
l_d_r1 = r1_penalty(real_pred, self.real_img)
l_d_r1 = (self.r1_reg_weight / 2 * l_d_r1 * self.net_d_reg_every + 0 * real_pred[0])
# TODO: why do we need to add 0 * real_pred, otherwise, a runtime
# error will arise: RuntimeError: Expected to have finished
# reduction in the prior iteration before starting a new one.
# This error indicates that your module has parameters that were
# not used in producing loss.
loss_dict['l_d_r1'] = l_d_r1.detach().mean()
l_d_r1.backward()
self.optimizer_d.step()
# optimize net_g
for p in self.net_d.parameters():
p.requires_grad = False
self.optimizer_g.zero_grad()
noise = self.mixing_noise(batch, self.mixing_prob)
fake_img, _ = self.net_g(noise)
fake_pred = self.net_d(fake_img)
# wgan loss with softplus (non-saturating loss) for generator
l_g = self.cri_gan(fake_pred, True, is_disc=False)
loss_dict['l_g'] = l_g
l_g.backward()
if current_iter % self.net_g_reg_every == 0:
path_batch_size = max(1, batch // self.opt['train']['path_batch_shrink'])
noise = self.mixing_noise(path_batch_size, self.mixing_prob)
fake_img, latents = self.net_g(noise, return_latents=True)
l_g_path, path_lengths, self.mean_path_length = g_path_regularize(fake_img, latents, self.mean_path_length)
l_g_path = (self.path_reg_weight * self.net_g_reg_every * l_g_path + 0 * fake_img[0, 0, 0, 0])
# TODO: why do we need to add 0 * fake_img[0, 0, 0, 0]
l_g_path.backward()
loss_dict['l_g_path'] = l_g_path.detach().mean()
loss_dict['path_length'] = path_lengths
self.optimizer_g.step()
self.log_dict = self.reduce_loss_dict(loss_dict)
# EMA
self.model_ema(decay=0.5**(32 / (10 * 1000)))
def test(self):
with torch.no_grad():
self.net_g_ema.eval()
self.output, _ = self.net_g_ema([self.fixed_sample])
def dist_validation(self, dataloader, current_iter, tb_logger, save_img):
if self.opt['rank'] == 0:
self.nondist_validation(dataloader, current_iter, tb_logger, save_img)
def nondist_validation(self, dataloader, current_iter, tb_logger, save_img):
assert dataloader is None, 'Validation dataloader should be None.'
self.test()
result = tensor2img(self.output, min_max=(-1, 1))
if self.opt['is_train']:
save_img_path = osp.join(self.opt['path']['visualization'], 'train', f'train_{current_iter}.png')
else:
save_img_path = osp.join(self.opt['path']['visualization'], 'test', f'test_{self.opt["name"]}.png')
imwrite(result, save_img_path)
# add sample images to tb_logger
result = (result / 255.).astype(np.float32)
result = cv2.cvtColor(result, cv2.COLOR_BGR2RGB)
if tb_logger is not None:
tb_logger.add_image('samples', result, global_step=current_iter, dataformats='HWC')
def save(self, epoch, current_iter):
self.save_network([self.net_g, self.net_g_ema], 'net_g', current_iter, param_key=['params', 'params_ema'])
self.save_network(self.net_d, 'net_d', current_iter)
self.save_training_state(epoch, current_iter)
|