Spaces:
Running
Running
File size: 11,751 Bytes
c59c099 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 |
import numpy as np
import torch
from torch import nn as nn
from torch.nn import functional as F
from basicsr.utils.registry import ARCH_REGISTRY
class DenseBlocksTemporalReduce(nn.Module):
"""A concatenation of 3 dense blocks with reduction in temporal dimension.
Note that the output temporal dimension is 6 fewer the input temporal dimension, since there are 3 blocks.
Args:
num_feat (int): Number of channels in the blocks. Default: 64.
num_grow_ch (int): Growing factor of the dense blocks. Default: 32
adapt_official_weights (bool): Whether to adapt the weights translated from the official implementation.
Set to false if you want to train from scratch. Default: False.
"""
def __init__(self, num_feat=64, num_grow_ch=32, adapt_official_weights=False):
super(DenseBlocksTemporalReduce, self).__init__()
if adapt_official_weights:
eps = 1e-3
momentum = 1e-3
else: # pytorch default values
eps = 1e-05
momentum = 0.1
self.temporal_reduce1 = nn.Sequential(
nn.BatchNorm3d(num_feat, eps=eps, momentum=momentum), nn.ReLU(inplace=True),
nn.Conv3d(num_feat, num_feat, (1, 1, 1), stride=(1, 1, 1), padding=(0, 0, 0), bias=True),
nn.BatchNorm3d(num_feat, eps=eps, momentum=momentum), nn.ReLU(inplace=True),
nn.Conv3d(num_feat, num_grow_ch, (3, 3, 3), stride=(1, 1, 1), padding=(0, 1, 1), bias=True))
self.temporal_reduce2 = nn.Sequential(
nn.BatchNorm3d(num_feat + num_grow_ch, eps=eps, momentum=momentum), nn.ReLU(inplace=True),
nn.Conv3d(
num_feat + num_grow_ch,
num_feat + num_grow_ch, (1, 1, 1),
stride=(1, 1, 1),
padding=(0, 0, 0),
bias=True), nn.BatchNorm3d(num_feat + num_grow_ch, eps=eps, momentum=momentum), nn.ReLU(inplace=True),
nn.Conv3d(num_feat + num_grow_ch, num_grow_ch, (3, 3, 3), stride=(1, 1, 1), padding=(0, 1, 1), bias=True))
self.temporal_reduce3 = nn.Sequential(
nn.BatchNorm3d(num_feat + 2 * num_grow_ch, eps=eps, momentum=momentum), nn.ReLU(inplace=True),
nn.Conv3d(
num_feat + 2 * num_grow_ch,
num_feat + 2 * num_grow_ch, (1, 1, 1),
stride=(1, 1, 1),
padding=(0, 0, 0),
bias=True), nn.BatchNorm3d(num_feat + 2 * num_grow_ch, eps=eps, momentum=momentum),
nn.ReLU(inplace=True),
nn.Conv3d(
num_feat + 2 * num_grow_ch, num_grow_ch, (3, 3, 3), stride=(1, 1, 1), padding=(0, 1, 1), bias=True))
def forward(self, x):
"""
Args:
x (Tensor): Input tensor with shape (b, num_feat, t, h, w).
Returns:
Tensor: Output with shape (b, num_feat + num_grow_ch * 3, 1, h, w).
"""
x1 = self.temporal_reduce1(x)
x1 = torch.cat((x[:, :, 1:-1, :, :], x1), 1)
x2 = self.temporal_reduce2(x1)
x2 = torch.cat((x1[:, :, 1:-1, :, :], x2), 1)
x3 = self.temporal_reduce3(x2)
x3 = torch.cat((x2[:, :, 1:-1, :, :], x3), 1)
return x3
class DenseBlocks(nn.Module):
""" A concatenation of N dense blocks.
Args:
num_feat (int): Number of channels in the blocks. Default: 64.
num_grow_ch (int): Growing factor of the dense blocks. Default: 32.
num_block (int): Number of dense blocks. The values are:
DUF-S (16 layers): 3
DUF-M (18 layers): 9
DUF-L (52 layers): 21
adapt_official_weights (bool): Whether to adapt the weights translated from the official implementation.
Set to false if you want to train from scratch. Default: False.
"""
def __init__(self, num_block, num_feat=64, num_grow_ch=16, adapt_official_weights=False):
super(DenseBlocks, self).__init__()
if adapt_official_weights:
eps = 1e-3
momentum = 1e-3
else: # pytorch default values
eps = 1e-05
momentum = 0.1
self.dense_blocks = nn.ModuleList()
for i in range(0, num_block):
self.dense_blocks.append(
nn.Sequential(
nn.BatchNorm3d(num_feat + i * num_grow_ch, eps=eps, momentum=momentum), nn.ReLU(inplace=True),
nn.Conv3d(
num_feat + i * num_grow_ch,
num_feat + i * num_grow_ch, (1, 1, 1),
stride=(1, 1, 1),
padding=(0, 0, 0),
bias=True), nn.BatchNorm3d(num_feat + i * num_grow_ch, eps=eps, momentum=momentum),
nn.ReLU(inplace=True),
nn.Conv3d(
num_feat + i * num_grow_ch,
num_grow_ch, (3, 3, 3),
stride=(1, 1, 1),
padding=(1, 1, 1),
bias=True)))
def forward(self, x):
"""
Args:
x (Tensor): Input tensor with shape (b, num_feat, t, h, w).
Returns:
Tensor: Output with shape (b, num_feat + num_block * num_grow_ch, t, h, w).
"""
for i in range(0, len(self.dense_blocks)):
y = self.dense_blocks[i](x)
x = torch.cat((x, y), 1)
return x
class DynamicUpsamplingFilter(nn.Module):
"""Dynamic upsampling filter used in DUF.
Reference: https://github.com/yhjo09/VSR-DUF
It only supports input with 3 channels. And it applies the same filters to 3 channels.
Args:
filter_size (tuple): Filter size of generated filters. The shape is (kh, kw). Default: (5, 5).
"""
def __init__(self, filter_size=(5, 5)):
super(DynamicUpsamplingFilter, self).__init__()
if not isinstance(filter_size, tuple):
raise TypeError(f'The type of filter_size must be tuple, but got type{filter_size}')
if len(filter_size) != 2:
raise ValueError(f'The length of filter size must be 2, but got {len(filter_size)}.')
# generate a local expansion filter, similar to im2col
self.filter_size = filter_size
filter_prod = np.prod(filter_size)
expansion_filter = torch.eye(int(filter_prod)).view(filter_prod, 1, *filter_size) # (kh*kw, 1, kh, kw)
self.expansion_filter = expansion_filter.repeat(3, 1, 1, 1) # repeat for all the 3 channels
def forward(self, x, filters):
"""Forward function for DynamicUpsamplingFilter.
Args:
x (Tensor): Input image with 3 channels. The shape is (n, 3, h, w).
filters (Tensor): Generated dynamic filters. The shape is (n, filter_prod, upsampling_square, h, w).
filter_prod: prod of filter kernel size, e.g., 1*5*5=25.
upsampling_square: similar to pixel shuffle, upsampling_square = upsampling * upsampling.
e.g., for x 4 upsampling, upsampling_square= 4*4 = 16
Returns:
Tensor: Filtered image with shape (n, 3*upsampling_square, h, w)
"""
n, filter_prod, upsampling_square, h, w = filters.size()
kh, kw = self.filter_size
expanded_input = F.conv2d(
x, self.expansion_filter.to(x), padding=(kh // 2, kw // 2), groups=3) # (n, 3*filter_prod, h, w)
expanded_input = expanded_input.view(n, 3, filter_prod, h, w).permute(0, 3, 4, 1,
2) # (n, h, w, 3, filter_prod)
filters = filters.permute(0, 3, 4, 1, 2) # (n, h, w, filter_prod, upsampling_square]
out = torch.matmul(expanded_input, filters) # (n, h, w, 3, upsampling_square)
return out.permute(0, 3, 4, 1, 2).view(n, 3 * upsampling_square, h, w)
@ARCH_REGISTRY.register()
class DUF(nn.Module):
"""Network architecture for DUF
``Paper: Deep Video Super-Resolution Network Using Dynamic Upsampling Filters Without Explicit Motion Compensation``
Reference: https://github.com/yhjo09/VSR-DUF
For all the models below, 'adapt_official_weights' is only necessary when
loading the weights converted from the official TensorFlow weights.
Please set it to False if you are training the model from scratch.
There are three models with different model size: DUF16Layers, DUF28Layers,
and DUF52Layers. This class is the base class for these models.
Args:
scale (int): The upsampling factor. Default: 4.
num_layer (int): The number of layers. Default: 52.
adapt_official_weights_weights (bool): Whether to adapt the weights
translated from the official implementation. Set to false if you
want to train from scratch. Default: False.
"""
def __init__(self, scale=4, num_layer=52, adapt_official_weights=False):
super(DUF, self).__init__()
self.scale = scale
if adapt_official_weights:
eps = 1e-3
momentum = 1e-3
else: # pytorch default values
eps = 1e-05
momentum = 0.1
self.conv3d1 = nn.Conv3d(3, 64, (1, 3, 3), stride=(1, 1, 1), padding=(0, 1, 1), bias=True)
self.dynamic_filter = DynamicUpsamplingFilter((5, 5))
if num_layer == 16:
num_block = 3
num_grow_ch = 32
elif num_layer == 28:
num_block = 9
num_grow_ch = 16
elif num_layer == 52:
num_block = 21
num_grow_ch = 16
else:
raise ValueError(f'Only supported (16, 28, 52) layers, but got {num_layer}.')
self.dense_block1 = DenseBlocks(
num_block=num_block, num_feat=64, num_grow_ch=num_grow_ch,
adapt_official_weights=adapt_official_weights) # T = 7
self.dense_block2 = DenseBlocksTemporalReduce(
64 + num_grow_ch * num_block, num_grow_ch, adapt_official_weights=adapt_official_weights) # T = 1
channels = 64 + num_grow_ch * num_block + num_grow_ch * 3
self.bn3d2 = nn.BatchNorm3d(channels, eps=eps, momentum=momentum)
self.conv3d2 = nn.Conv3d(channels, 256, (1, 3, 3), stride=(1, 1, 1), padding=(0, 1, 1), bias=True)
self.conv3d_r1 = nn.Conv3d(256, 256, (1, 1, 1), stride=(1, 1, 1), padding=(0, 0, 0), bias=True)
self.conv3d_r2 = nn.Conv3d(256, 3 * (scale**2), (1, 1, 1), stride=(1, 1, 1), padding=(0, 0, 0), bias=True)
self.conv3d_f1 = nn.Conv3d(256, 512, (1, 1, 1), stride=(1, 1, 1), padding=(0, 0, 0), bias=True)
self.conv3d_f2 = nn.Conv3d(
512, 1 * 5 * 5 * (scale**2), (1, 1, 1), stride=(1, 1, 1), padding=(0, 0, 0), bias=True)
def forward(self, x):
"""
Args:
x (Tensor): Input with shape (b, 7, c, h, w)
Returns:
Tensor: Output with shape (b, c, h * scale, w * scale)
"""
num_batches, num_imgs, _, h, w = x.size()
x = x.permute(0, 2, 1, 3, 4) # (b, c, 7, h, w) for Conv3D
x_center = x[:, :, num_imgs // 2, :, :]
x = self.conv3d1(x)
x = self.dense_block1(x)
x = self.dense_block2(x)
x = F.relu(self.bn3d2(x), inplace=True)
x = F.relu(self.conv3d2(x), inplace=True)
# residual image
res = self.conv3d_r2(F.relu(self.conv3d_r1(x), inplace=True))
# filter
filter_ = self.conv3d_f2(F.relu(self.conv3d_f1(x), inplace=True))
filter_ = F.softmax(filter_.view(num_batches, 25, self.scale**2, h, w), dim=1)
# dynamic filter
out = self.dynamic_filter(x_center, filter_)
out += res.squeeze_(2)
out = F.pixel_shuffle(out, self.scale)
return out
|