File size: 16,324 Bytes
2fe3da0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
# Copyright (c) 2020-2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved. 
#
# NVIDIA CORPORATION, its affiliates and licensors retain all intellectual
# property and proprietary rights in and to this material, related
# documentation and any modifications thereto. Any use, reproduction, 
# disclosure or distribution of this material and related documentation 
# without an express license agreement from NVIDIA CORPORATION or 
# its affiliates is strictly prohibited.

import torch
import nvdiffrast.torch as dr

from . import render_utils
from src.models.geometry.render import renderutils as ru
import numpy as np
from PIL import Image
import torchvision

# ==============================================================================================
#  Helper functions
# ==============================================================================================
def interpolate(attr, rast, attr_idx, rast_db=None):
    return dr.interpolate(attr.contiguous(), rast, attr_idx, rast_db=rast_db, diff_attrs=None if rast_db is None else 'all')


def get_mip(roughness):
    return torch.where(roughness < 1.0
                    , (torch.clamp(roughness, 0.04, 1.0) - 0.04) / (1.0 - 0.04) * (6 - 2)
                    , (torch.clamp(roughness, 1.0, 1.0) - 1.0) / (1.0 - 1.0) + 6 - 2)

def shade_with_env(gb_pos, gb_normal, kd, metallic, roughness, view_pos, run_n_view, env, metallic_gt, roughness_gt, use_material_gt=True, gt_render=False):

    #mask = mask[..., 0]
    view_pos = view_pos.expand(-1,  gb_pos.shape[1],  gb_pos.shape[2], -1)  #.reshape(1, 512, 10240, 3)
 
    wo = render_utils.safe_normalize(view_pos - gb_pos)

    spec_col  = (1.0 - metallic_gt)*0.04 + kd * metallic_gt
    diff_col  = kd * (1.0 - metallic_gt)

    
    nrmvec = gb_normal
    reflvec = render_utils.safe_normalize(render_utils.reflect(wo, nrmvec))
    
    prb_rendered_list = []
    pbr_specular_light_list = []
    pbr_diffuse_light_list = []
    for i in range(run_n_view):
        specular_light, diffuse_light = env[i]
        diffuse_light = diffuse_light.cuda()
        specular_light_new = []
        for split_specular_light in specular_light:
            specular_light_new.append(split_specular_light.cuda())
        specular_light = specular_light_new

        shaded_col = torch.ones((gb_pos.shape[1], gb_pos.shape[2], 3)).cuda()

        diffuse = dr.texture(diffuse_light[None, ...], nrmvec[i,:,:,:][None, ...].contiguous(), filter_mode='linear', boundary_mode='cube')
        diffuse_comp = diffuse * diff_col[i,:,:,:][None, ...]
        
        # Lookup FG term from lookup texture
        NdotV = torch.clamp(render_utils.dot(wo[i,:,:,:], nrmvec[i,:,:,:]), min=1e-4)
        fg_uv = torch.cat((NdotV, roughness_gt[i,:,:,:]), dim=-1)
        _FG_LUT = torch.as_tensor(np.fromfile('src/data/bsdf_256_256.bin', dtype=np.float32).reshape(1, 256, 256, 2), dtype=torch.float32, device='cuda')
        fg_lookup = dr.texture(_FG_LUT, fg_uv[None, ...], filter_mode='linear', boundary_mode='clamp')
        
        miplevel = get_mip(roughness_gt[i,:,:,:])
        miplevel = miplevel[None, ...]
        spec = dr.texture(specular_light[0][None, ...], reflvec[i,:,:,:][None, ...].contiguous(), mip=list(m[None, ...] for m in specular_light[1:]), mip_level_bias=miplevel[..., 0], filter_mode='linear-mipmap-linear', boundary_mode='cube')

        # Compute aggregate lighting
        reflectance = spec_col[i,:,:,:][None, ...] * fg_lookup[...,0:1] + fg_lookup[...,1:2]
        specular_comp = spec * reflectance
        shaded_col = (specular_comp[0] + diffuse_comp[0])
        
        prb_rendered_list.append(shaded_col)
        pbr_specular_light_list.append(spec[0])
        pbr_diffuse_light_list.append(diffuse[0])
      
    shaded_col_all = torch.stack(prb_rendered_list, dim=0)
    pbr_specular_light =  torch.stack(pbr_specular_light_list, dim=0)
    pbr_diffuse_light =  torch.stack(pbr_diffuse_light_list, dim=0)

    shaded_col_all = render_utils.rgb_to_srgb(shaded_col_all).clamp(0.,1.)
    pbr_specular_light = render_utils.rgb_to_srgb(pbr_specular_light).clamp(0.,1.)
    pbr_diffuse_light = render_utils.rgb_to_srgb(pbr_diffuse_light).clamp(0.,1.)
    
    return shaded_col_all, pbr_specular_light, pbr_diffuse_light

# ==============================================================================================
#  pixel shader
# ==============================================================================================
def shade(
        gb_pos,
        gb_geometric_normal,
        gb_normal,
        gb_tangent,
        gb_texc,
        gb_texc_deriv,
        view_pos,
        env,
        planes,
        kd_fn,
        materials,
        material,
        mask,
        gt_render,
        gt_albedo_map=None,
    ):

    ################################################################################
    # Texture lookups
    ################################################################################
    perturbed_nrm = None
    resolution = gb_pos.shape[1]
    N_views = view_pos.shape[0]

    if planes is None:
        kd = material['kd'].sample(gb_texc, gb_texc_deriv)
        matellic_gt, roughness_gt =  (materials[0] * torch.ones(*kd.shape[:-1])).unsqueeze(-1).cuda(), (materials[1] * torch.ones(*kd.shape[:-1])).unsqueeze(-1).cuda()
        matellic, roughness = None, None
    else:
        # predict kd with MLP and interpolated feature
        gb_pos_interp, mask = [gb_pos], [mask]
        gb_pos_interp = [torch.cat([pos[i_view:i_view + 1] for i_view in range(N_views)], dim=2) for pos in gb_pos_interp]
        mask = [torch.cat([ma[i_view:i_view + 1] for i_view in range(N_views)], dim=2) for ma in mask]
        # gt_albedo_map
        if gt_albedo_map is not None:
            kd = gt_albedo_map[0].permute(0,2,3,1)
            matellic, roughness = None, None
        else:
            kd, matellic, roughness = kd_fn( planes[None,...], gb_pos_interp, mask[0])
            kd = torch.cat( [torch.cat([kd[i:i + 1, :, resolution * i_view: resolution * (i_view + 1)]for i_view in range(N_views)], dim=0) for i in range(len(kd))], dim=0)
            
        matellic_gt = torch.full((N_views, resolution, resolution, 1), fill_value=0, dtype=torch.float32)
        roughness_gt = torch.full((N_views, resolution, resolution, 1), fill_value=0, dtype=torch.float32)
       
        matellic_val = [x[0] for x in materials]
        roughness_val = [y[1] for y in materials]

        for i in range(len(matellic_gt)):
            matellic_gt[i, :, :, 0].fill_(matellic_val[i])
            roughness_gt[i, :, :, 0].fill_(roughness_val[i])

        matellic_gt = matellic_gt.cuda()
        roughness_gt = roughness_gt.cuda()

    # Separate kd into alpha and color, default alpha = 1
    alpha = kd[..., 3:4] if kd.shape[-1] == 4 else torch.ones_like(kd[..., 0:1]) 
    kd = kd[..., 0:3].clamp(0., 1.)
    ################################################################################
    # Normal perturbation & normal bend
    ################################################################################
    #if 'no_perturbed_nrm' in material and material['no_perturbed_nrm']:
    perturbed_nrm = None

    gb_normal_ = ru.prepare_shading_normal(gb_pos, view_pos, perturbed_nrm, gb_normal, gb_tangent, gb_geometric_normal, two_sided_shading=True, opengl=True)

    ################################################################################
    # Evaluate BSDF
    ################################################################################
    
    shaded_col, spec_light, diff_light = shade_with_env(gb_pos, gb_normal_, kd, matellic, roughness, view_pos, N_views, env, matellic_gt, roughness_gt, use_material_gt=True, gt_render=gt_render)
    
    buffers = {
        'shaded'    : torch.cat((shaded_col, alpha), dim=-1),
        'spec_light': torch.cat((spec_light, alpha), dim=-1),
        'diff_light': torch.cat((diff_light, alpha), dim=-1),
        'gb_normal' : torch.cat((gb_normal_, alpha), dim=-1),
        'normal'    : torch.cat((gb_normal, alpha), dim=-1),
        'albedo'    :  torch.cat((kd, alpha), dim=-1),
    }
    return buffers

# ==============================================================================================
#  Render a depth slice of the mesh (scene), some limitations:
#  - Single mesh
#  - Single light
#  - Single material
# ==============================================================================================
def render_layer(
        rast,
        rast_deriv,
        mesh,
        view_pos,
        env,
        planes,
        kd_fn,
        materials,
        v_pos_clip,
        resolution,
        spp,
        msaa,
        gt_render,
        gt_albedo_map=None,
    ):

    full_res = [resolution[0]*spp, resolution[1]*spp]

    ################################################################################
    # Rasterize
    ################################################################################

    # Scale down to shading resolution when MSAA is enabled, otherwise shade at full resolution
    if spp > 1 and msaa:
        rast_out_s = render_utils.scale_img_nhwc(rast, resolution, mag='nearest', min='nearest')
        rast_out_deriv_s = render_utils.scale_img_nhwc(rast_deriv, resolution, mag='nearest', min='nearest') * spp
    else:
        rast_out_s = rast
        rast_out_deriv_s = rast_deriv

    ################################################################################
    # Interpolate attributes
    ################################################################################

    # Interpolate world space position
    gb_pos, _ = interpolate(mesh.v_pos[None, ...], rast_out_s, mesh.t_pos_idx.int())

    # Compute geometric normals. We need those because of bent normals trick (for bump mapping)
    v0 = mesh.v_pos[mesh.t_pos_idx[:, 0], :]
    v1 = mesh.v_pos[mesh.t_pos_idx[:, 1], :]
    v2 = mesh.v_pos[mesh.t_pos_idx[:, 2], :]
    face_normals = render_utils.safe_normalize(torch.cross(v1 - v0, v2 - v0))
    face_normal_indices = (torch.arange(0, face_normals.shape[0], dtype=torch.int64, device='cuda')[:, None]).repeat(1, 3)
    gb_geometric_normal, _ = interpolate(face_normals[None, ...], rast_out_s, face_normal_indices.int())

    # Compute tangent space
    assert mesh.v_nrm is not None and mesh.v_tng is not None
    gb_normal, _ = interpolate(mesh.v_nrm[None, ...], rast_out_s, mesh.t_nrm_idx.int())
    gb_tangent, _ = interpolate(mesh.v_tng[None, ...], rast_out_s, mesh.t_tng_idx.int()) # Interpolate tangents

    # Texture coordinate
    assert mesh.v_tex is not None
    gb_texc, gb_texc_deriv = interpolate(mesh.v_tex[None, ...], rast_out_s, mesh.t_tex_idx.int(), rast_db=rast_out_deriv_s)
    
    # render depth
    depth = torch.linalg.norm(view_pos.expand_as(gb_pos) - gb_pos, dim=-1)
    
    mask = torch.clamp(rast[..., -1:], 0, 1)
    antialias_mask = dr.antialias(mask.clone().contiguous(), rast, v_pos_clip,mesh.t_pos_idx.int())

    ################################################################################
    # Shade
    ################################################################################
    buffers = shade(gb_pos, gb_geometric_normal, gb_normal, gb_tangent, gb_texc, gb_texc_deriv, view_pos, env, planes, kd_fn, materials, mesh.material, mask, gt_render, gt_albedo_map=gt_albedo_map)
    buffers['depth'] = torch.cat((depth.unsqueeze(-1).repeat(1,1,1,3), torch.ones_like(gb_pos[..., 0:1])), dim=-1 )
    buffers['mask'] = torch.cat((antialias_mask.repeat(1,1,1,3), torch.ones_like(gb_pos[..., 0:1])), dim=-1 )
    ################################################################################
    # Prepare output
    ################################################################################

    # Scale back up to visibility resolution if using MSAA
    if spp > 1 and msaa:
        for key in buffers.keys():
            buffers[key] = render_utils.scale_img_nhwc(buffers[key], full_res, mag='nearest', min='nearest')

    # Return buffers
    return buffers

# ==============================================================================================
#  Render a depth peeled mesh (scene), some limitations:
#  - Single mesh
#  - Single light
#  - Single material
# ==============================================================================================
def render_mesh(
        ctx,
        mesh,
        mtx_in,
        view_pos,
        env,
        planes,
        kd_fn,
        materials,
        resolution,
        spp         = 1,
        num_layers  = 1,
        msaa        = False,
        background  = None, 
        gt_render   = False,
        gt_albedo_map = None,
    ):
    def prepare_input_vector(x):
        x = torch.tensor(x, dtype=torch.float32, device='cuda') if not torch.is_tensor(x) else x
        return x[:, None, None, :] if len(x.shape) == 2 else x
    
    def composite_buffer(key, layers, background, antialias):
        accum = background
        for buffers, rast in reversed(layers):
            alpha = (rast[..., -1:] > 0).float() * buffers[key][..., -1:]
            accum = torch.lerp(accum, torch.cat((buffers[key][..., :-1], torch.ones_like(buffers[key][..., -1:])), dim=-1), alpha)
            if antialias:
                accum = dr.antialias(accum.contiguous(), rast, v_pos_clip, mesh.t_pos_idx.int())
        return accum

    assert mesh.t_pos_idx.shape[0] > 0, "Got empty training triangle mesh (unrecoverable discontinuity)"
    assert background is None or (background.shape[1] == resolution[0] and background.shape[2] == resolution[1])

    full_res = [resolution[0]*spp, resolution[1]*spp]

    # Convert numpy arrays to torch tensors
    mtx_in      = torch.tensor(mtx_in, dtype=torch.float32, device='cuda') if not torch.is_tensor(mtx_in) else mtx_in
    view_pos    = prepare_input_vector(view_pos)

    # clip space transform
    v_pos_clip = ru.xfm_points(mesh.v_pos[None, ...], mtx_in)

    # Render all layers front-to-back
    layers = []
    with dr.DepthPeeler(ctx, v_pos_clip, mesh.t_pos_idx.int(), full_res) as peeler:
        for _ in range(num_layers):
            rast, db = peeler.rasterize_next_layer()
            layers += [(render_layer(rast, db, mesh, view_pos, env, planes, kd_fn, materials, v_pos_clip, resolution, spp, msaa, gt_render, gt_albedo_map), rast)]

    # Setup background
    if background is not None:
        if spp > 1:
            background = render_utils.scale_img_nhwc(background, full_res, mag='nearest', min='nearest')
        background = torch.cat((background, torch.zeros_like(background[..., 0:1])), dim=-1)
    else:
        background = torch.ones(1, full_res[0], full_res[1], 4, dtype=torch.float32, device='cuda')
        background_black = torch.zeros(1, full_res[0], full_res[1], 4, dtype=torch.float32, device='cuda')
        
    # Composite layers front-to-back
    out_buffers = {}

    for key in layers[0][0].keys():
        if key == 'mask':
            accum = composite_buffer(key, layers, background_black, True)
        else:
            accum = composite_buffer(key, layers, background, True)

        # Downscale to framebuffer resolution. Use avg pooling 
        out_buffers[key] = render_utils.avg_pool_nhwc(accum, spp) if spp > 1 else accum
    
    return out_buffers

# ==============================================================================================
#  Render UVs
# ==============================================================================================
def render_uv(ctx, mesh, resolution, mlp_texture):

    # clip space transform 
    uv_clip = mesh.v_tex[None, ...]*2.0 - 1.0

    # pad to four component coordinate
    uv_clip4 = torch.cat((uv_clip, torch.zeros_like(uv_clip[...,0:1]), torch.ones_like(uv_clip[...,0:1])), dim = -1)

    # rasterize
    rast, _ = dr.rasterize(ctx, uv_clip4, mesh.t_tex_idx.int(), resolution)

    # Interpolate world space position
    gb_pos, _ = interpolate(mesh.v_pos[None, ...], rast, mesh.t_pos_idx.int())

    # Sample out textures from MLP
    all_tex = mlp_texture.sample(gb_pos)
    assert all_tex.shape[-1] == 9 or all_tex.shape[-1] == 10, "Combined kd_ks_normal must be 9 or 10 channels"
    perturbed_nrm = all_tex[..., -3:]
    return (rast[..., -1:] > 0).float(), all_tex[..., :-6], all_tex[..., -6:-3], render_utils.safe_normalize(perturbed_nrm)