File size: 5,914 Bytes
2fe3da0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
# ORIGINAL LICENSE
# SPDX-FileCopyrightText: Copyright (c) 2021-2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: LicenseRef-NvidiaProprietary
#
# Modified by Jiale Xu
# The modifications are subject to the same license as the original.

import itertools
import torch
import torch.nn as nn

from .utils.renderer import generate_planes, project_onto_planes, sample_from_planes


class OSGDecoder(nn.Module):
    """
    Triplane decoder that gives RGB and sigma values from sampled features.
    Using ReLU here instead of Softplus in the original implementation.
    
    Reference:
    EG3D: https://github.com/NVlabs/eg3d/blob/main/eg3d/training/triplane.py#L112
    """
    def __init__(self, n_features: int,
                 hidden_dim: int = 64, num_layers: int = 4, activation: nn.Module = nn.ReLU):
        super().__init__()

        self.net_sdf = nn.Sequential(
            nn.Linear(3 * n_features, hidden_dim),
            activation(),
            *itertools.chain(*[[
                nn.Linear(hidden_dim, hidden_dim),
                activation(),
            ] for _ in range(num_layers - 2)]),
            nn.Linear(hidden_dim, 1),
        )
        self.net_rgb = nn.Sequential(
            nn.Linear(3 * n_features, hidden_dim),
            activation(),
            *itertools.chain(*[[
                nn.Linear(hidden_dim, hidden_dim),
                activation(),
            ] for _ in range(num_layers - 2)]),
            nn.Linear(hidden_dim, 3),
        )
        self.net_material = nn.Sequential(
            nn.Linear(3 * n_features, hidden_dim),
            activation(),
            *itertools.chain(*[[
                nn.Linear(hidden_dim, hidden_dim),
                activation(),
            ] for _ in range(num_layers - 2)]),
            nn.Linear(hidden_dim, 2),
        )
        self.net_deformation = nn.Sequential(
            nn.Linear(3 * n_features, hidden_dim),
            activation(),
            *itertools.chain(*[[
                nn.Linear(hidden_dim, hidden_dim),
                activation(),
            ] for _ in range(num_layers - 2)]),
            nn.Linear(hidden_dim, 3),
        )
        self.net_weight = nn.Sequential(
            nn.Linear(8 * 3 * n_features, hidden_dim),
            activation(),
            *itertools.chain(*[[
                nn.Linear(hidden_dim, hidden_dim),
                activation(),
            ] for _ in range(num_layers - 2)]),
            nn.Linear(hidden_dim, 21),
        )

        # init all bias to zero
        for m in self.modules():
            if isinstance(m, nn.Linear):
                nn.init.zeros_(m.bias)

    def get_geometry_prediction(self, sampled_features, flexicubes_indices):
        _N, n_planes, _M, _C = sampled_features.shape
        sampled_features = sampled_features.permute(0, 2, 1, 3).reshape(_N, _M, n_planes*_C)

        sdf = self.net_sdf(sampled_features)
        deformation = self.net_deformation(sampled_features)

        grid_features = torch.index_select(input=sampled_features, index=flexicubes_indices.reshape(-1), dim=1)
        grid_features = grid_features.reshape(
            sampled_features.shape[0], flexicubes_indices.shape[0], flexicubes_indices.shape[1] * sampled_features.shape[-1])
        weight = self.net_weight(grid_features) * 0.1

        return sdf, deformation, weight
    
    def get_texture_prediction(self, sampled_features):
        _N, n_planes, _M, _C = sampled_features.shape
        sampled_features = sampled_features.permute(0, 2, 1, 3).reshape(_N, _M, n_planes*_C)

        rgb = self.net_rgb(sampled_features)
        rgb = torch.sigmoid(rgb)*(1 + 2*0.001) - 0.001  # Uses sigmoid clamping from MipNeRF
        
        materials = self.net_material(sampled_features)
        materials = torch.sigmoid(materials)
        metallic, roughness = materials[...,0], materials[...,1]
        rmax, rmin = 1.0, 0.04 ** 2
        roughness = roughness * (rmax - rmin) + rmin

        return rgb, metallic, roughness


class TriplaneSynthesizer(nn.Module):
    """
    Synthesizer that renders a triplane volume with planes and a camera.
    
    Reference:
    EG3D: https://github.com/NVlabs/eg3d/blob/main/eg3d/training/triplane.py#L19
    """

    DEFAULT_RENDERING_KWARGS = {
        'ray_start': 'auto',
        'ray_end': 'auto',
        'box_warp': 2.,
        'white_back': True,
        'disparity_space_sampling': False,
        'clamp_mode': 'softplus',
        'sampler_bbox_min': -1.,
        'sampler_bbox_max': 1.,
    }

    def __init__(self, triplane_dim: int, samples_per_ray: int):
        super().__init__()

        # attributes
        self.triplane_dim = triplane_dim
        self.rendering_kwargs = {
            **self.DEFAULT_RENDERING_KWARGS,
            'depth_resolution': samples_per_ray // 2,
            'depth_resolution_importance': samples_per_ray // 2,
        }

        # modules
        self.plane_axes = generate_planes()
        self.decoder = OSGDecoder(n_features=triplane_dim)

    def get_geometry_prediction(self, planes, sample_coordinates, flexicubes_indices):
        plane_axes = self.plane_axes.to(planes.device)
        sampled_features = sample_from_planes(
            plane_axes, planes, sample_coordinates, padding_mode='zeros', box_warp=self.rendering_kwargs['box_warp'])

        sdf, deformation, weight = self.decoder.get_geometry_prediction(sampled_features, flexicubes_indices)
        return sdf, deformation, weight
    
    def get_texture_prediction(self, planes, sample_coordinates):
        plane_axes = self.plane_axes.to(planes.device)
        sampled_features = sample_from_planes(
            plane_axes, planes, sample_coordinates, padding_mode='zeros', box_warp=self.rendering_kwargs['box_warp'])

        rgb, matellic, roughness = self.decoder.get_texture_prediction(sampled_features)
        return rgb, matellic, roughness