File size: 13,015 Bytes
2fe3da0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
/*
 * Copyright (c) 2020-2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
 *
 * NVIDIA CORPORATION, its affiliates and licensors retain all intellectual
 * property and proprietary rights in and to this material, related 
 * documentation and any modifications thereto. Any use, reproduction, 
 * disclosure or distribution of this material and related documentation
 * without an express license agreement from NVIDIA CORPORATION or 
 * its affiliates is strictly prohibited.
 */

#include "common.h"
#include "cubemap.h"
#include <float.h>

// https://cgvr.cs.uni-bremen.de/teaching/cg_literatur/Spherical,%20Cubic,%20and%20Parabolic%20Environment%20Mappings.pdf
__device__ float pixel_area(int x, int y, int N)
{
    if (N > 1)
    {
        int H = N / 2;
        x = abs(x - H);
        y = abs(y - H);
        float dx = atan((float)(x + 1) / (float)H) - atan((float)x / (float)H);
        float dy = atan((float)(y + 1) / (float)H) - atan((float)y / (float)H);
        return dx * dy;
    }
    else
        return 1;
}

__device__ vec3f cube_to_dir(int x, int y, int side, int N)
{
    float fx = 2.0f * (((float)x + 0.5f) / (float)N) - 1.0f;
    float fy = 2.0f * (((float)y + 0.5f) / (float)N) - 1.0f;
    switch (side)
    {
        case 0: return safeNormalize(vec3f(1, -fy, -fx));
        case 1: return safeNormalize(vec3f(-1, -fy, fx));
        case 2: return safeNormalize(vec3f(fx, 1, fy));
        case 3: return safeNormalize(vec3f(fx, -1, -fy));
        case 4: return safeNormalize(vec3f(fx, -fy, 1));
        case 5: return safeNormalize(vec3f(-fx, -fy, -1));
    }
    return vec3f(0,0,0); // Unreachable
}

__device__ vec3f dir_to_side(int side, vec3f v)
{
    switch (side)
    {
    case 0: return vec3f(-v.z, -v.y,  v.x);
    case 1: return vec3f( v.z, -v.y, -v.x);
    case 2: return vec3f( v.x,  v.z,  v.y);
    case 3: return vec3f( v.x, -v.z, -v.y);
    case 4: return vec3f( v.x, -v.y,  v.z);
    case 5: return vec3f(-v.x, -v.y, -v.z);
    }
    return vec3f(0,0,0); // Unreachable
}

__device__ void extents_1d(float x, float z, float theta, float& _min, float& _max)
{
    float l = sqrtf(x * x + z * z);
    float pxr = x + z * tan(theta) * l, pzr = z - x * tan(theta) * l;
    float pxl = x - z * tan(theta) * l, pzl = z + x * tan(theta) * l;
    if (pzl <= 0.00001f)
        _min = pxl > 0.0f ? FLT_MAX : -FLT_MAX;
    else
        _min = pxl / pzl;
    if (pzr <= 0.00001f)
        _max = pxr > 0.0f ? FLT_MAX : -FLT_MAX;
    else
        _max = pxr / pzr;
}

__device__ void dir_extents(int side, int N, vec3f v, float theta, int &_xmin, int& _xmax, int& _ymin, int& _ymax)
{
    vec3f c = dir_to_side(side, v); // remap to (x,y,z) where side is at z = 1

    if (theta < 0.785398f) // PI/4
    {
        float xmin, xmax, ymin, ymax;
        extents_1d(c.x, c.z, theta, xmin, xmax);
        extents_1d(c.y, c.z, theta, ymin, ymax);

        if (xmin > 1.0f || xmax < -1.0f || ymin > 1.0f || ymax < -1.0f)
        {
            _xmin = -1; _xmax = -1; _ymin = -1; _ymax = -1; // Bad aabb
        }
        else
        {
            _xmin = (int)min(max((xmin + 1.0f) * (0.5f * (float)N), 0.0f), (float)(N - 1));
            _xmax = (int)min(max((xmax + 1.0f) * (0.5f * (float)N), 0.0f), (float)(N - 1));
            _ymin = (int)min(max((ymin + 1.0f) * (0.5f * (float)N), 0.0f), (float)(N - 1));
            _ymax = (int)min(max((ymax + 1.0f) * (0.5f * (float)N), 0.0f), (float)(N - 1));
        }
    }
    else
    {
            _xmin = 0.0f;
            _xmax = (float)(N-1);
            _ymin = 0.0f;
            _ymax = (float)(N-1);
    }
}

///////////////////////////////////////////////////////////////////////////////////////////////////////////
// Diffuse kernel
__global__ void DiffuseCubemapFwdKernel(DiffuseCubemapKernelParams p)
{
    // Calculate pixel position.
    int px = blockIdx.x * blockDim.x + threadIdx.x;
    int py = blockIdx.y * blockDim.y + threadIdx.y;
    int pz = blockIdx.z;
    if (px >= p.gridSize.x || py >= p.gridSize.y || pz >= p.gridSize.z)
        return;

    int Npx = p.cubemap.dims[1];
    vec3f N = cube_to_dir(px, py, pz, Npx);

    vec3f col(0);

    for (int s = 0; s < p.cubemap.dims[0]; ++s)
    {
        for (int y = 0; y < Npx; ++y)
        {
            for (int x = 0; x < Npx; ++x)
            {
                vec3f L = cube_to_dir(x, y, s, Npx);
                float costheta = min(max(dot(N, L), 0.0f), 0.999f);
                float w = costheta * pixel_area(x, y, Npx) / 3.141592f; // pi = area of positive hemisphere
                col += p.cubemap.fetch3(x, y, s) * w;
            }
        }
    }

    p.out.store(px, py, pz, col);
}

__global__ void DiffuseCubemapBwdKernel(DiffuseCubemapKernelParams p)
{
    // Calculate pixel position.
    int px = blockIdx.x * blockDim.x + threadIdx.x;
    int py = blockIdx.y * blockDim.y + threadIdx.y;
    int pz = blockIdx.z;
    if (px >= p.gridSize.x || py >= p.gridSize.y || pz >= p.gridSize.z)
        return;

    int Npx = p.cubemap.dims[1];
    vec3f N = cube_to_dir(px, py, pz, Npx);
    vec3f grad = p.out.fetch3(px, py, pz);

    for (int s = 0; s < p.cubemap.dims[0]; ++s)
    {
        for (int y = 0; y < Npx; ++y)
        {
            for (int x = 0; x < Npx; ++x)
            {
                vec3f L = cube_to_dir(x, y, s, Npx);
                float costheta = min(max(dot(N, L), 0.0f), 0.999f);
                float w = costheta * pixel_area(x, y, Npx) / 3.141592f; // pi = area of positive hemisphere
                atomicAdd((float*)p.cubemap.d_val + p.cubemap.nhwcIndexContinuous(s, y, x, 0), grad.x * w);
                atomicAdd((float*)p.cubemap.d_val + p.cubemap.nhwcIndexContinuous(s, y, x, 1), grad.y * w);
                atomicAdd((float*)p.cubemap.d_val + p.cubemap.nhwcIndexContinuous(s, y, x, 2), grad.z * w);
            }
        }
    }
}

///////////////////////////////////////////////////////////////////////////////////////////////////////////
// GGX splitsum kernel 

__device__ inline float ndfGGX(const float alphaSqr, const float cosTheta)
{
    float _cosTheta = clamp(cosTheta, 0.0, 1.0f);
    float d = (_cosTheta * alphaSqr - _cosTheta) * _cosTheta + 1.0f;
    return alphaSqr / (d * d * M_PI);
}

__global__ void SpecularBoundsKernel(SpecularBoundsKernelParams p)
{
    int px = blockIdx.x * blockDim.x + threadIdx.x;
    int py = blockIdx.y * blockDim.y + threadIdx.y;
    int pz = blockIdx.z;
    if (px >= p.gridSize.x || py >= p.gridSize.y || pz >= p.gridSize.z)
        return;

    int Npx = p.gridSize.x;
    vec3f VNR = cube_to_dir(px, py, pz, Npx);

    const int TILE_SIZE = 16;

    // Brute force entire cubemap and compute bounds for the cone
    for (int s = 0; s < p.gridSize.z; ++s)
    {
        // Assume empty BBox 
        int _min_x = p.gridSize.x - 1, _max_x = 0;
        int _min_y = p.gridSize.y - 1, _max_y = 0;
        
        // For each (8x8) tile
        for (int tx = 0; tx < (p.gridSize.x + TILE_SIZE - 1) / TILE_SIZE; tx++)
        {
            for (int ty = 0; ty < (p.gridSize.y + TILE_SIZE - 1) / TILE_SIZE; ty++)
            {
                // Compute tile extents
                int tsx = tx * TILE_SIZE, tsy = ty * TILE_SIZE;
                int tex = min((tx + 1) * TILE_SIZE, p.gridSize.x), tey = min((ty + 1) * TILE_SIZE, p.gridSize.y);

                // Use some blunt interval arithmetics to cull tiles
                vec3f L0 = cube_to_dir(tsx, tsy, s, Npx), L1 = cube_to_dir(tex, tsy, s, Npx);
                vec3f L2 = cube_to_dir(tsx, tey, s, Npx), L3 = cube_to_dir(tex, tey, s, Npx);
                
                float minx = min(min(L0.x, L1.x), min(L2.x, L3.x)), maxx = max(max(L0.x, L1.x), max(L2.x, L3.x));
                float miny = min(min(L0.y, L1.y), min(L2.y, L3.y)), maxy = max(max(L0.y, L1.y), max(L2.y, L3.y));
                float minz = min(min(L0.z, L1.z), min(L2.z, L3.z)), maxz = max(max(L0.z, L1.z), max(L2.z, L3.z));

                float maxdp = max(minx * VNR.x, maxx * VNR.x) + max(miny * VNR.y, maxy * VNR.y) + max(minz * VNR.z, maxz * VNR.z);
                if (maxdp >= p.costheta_cutoff)
                {
                    // Test all pixels in tile.
                    for (int y = tsy; y < tey; ++y)
                    {
                        for (int x = tsx; x < tex; ++x)
                        {
                            vec3f L = cube_to_dir(x, y, s, Npx);
                            if (dot(L, VNR) >= p.costheta_cutoff)
                            {
                                _min_x = min(_min_x, x);
                                _max_x = max(_max_x, x);
                                _min_y = min(_min_y, y);
                                _max_y = max(_max_y, y);
                            }
                        }
                    }
                }
            }
        }
        p.out.store(p.out._nhwcIndex(pz, py, px, s * 4 + 0), _min_x);
        p.out.store(p.out._nhwcIndex(pz, py, px, s * 4 + 1), _max_x);
        p.out.store(p.out._nhwcIndex(pz, py, px, s * 4 + 2), _min_y);
        p.out.store(p.out._nhwcIndex(pz, py, px, s * 4 + 3), _max_y);
    }
}

__global__ void SpecularCubemapFwdKernel(SpecularCubemapKernelParams p)
{
    // Calculate pixel position.
    int px = blockIdx.x * blockDim.x + threadIdx.x;
    int py = blockIdx.y * blockDim.y + threadIdx.y;
    int pz = blockIdx.z;
    if (px >= p.gridSize.x || py >= p.gridSize.y || pz >= p.gridSize.z)
        return;

    int Npx = p.cubemap.dims[1];
    vec3f VNR = cube_to_dir(px, py, pz, Npx);

    float alpha = p.roughness * p.roughness;
    float alphaSqr = alpha * alpha;

    float wsum = 0.0f;
    vec3f col(0);
    for (int s = 0; s < p.cubemap.dims[0]; ++s)
    {
        int xmin, xmax, ymin, ymax;
        xmin = (int)p.bounds.fetch(p.bounds._nhwcIndex(pz, py, px, s * 4 + 0));
        xmax = (int)p.bounds.fetch(p.bounds._nhwcIndex(pz, py, px, s * 4 + 1));
        ymin = (int)p.bounds.fetch(p.bounds._nhwcIndex(pz, py, px, s * 4 + 2));
        ymax = (int)p.bounds.fetch(p.bounds._nhwcIndex(pz, py, px, s * 4 + 3));

        if (xmin <= xmax)
        {
            for (int y = ymin; y <= ymax; ++y)
            {
                for (int x = xmin; x <= xmax; ++x)
                {
                    vec3f L = cube_to_dir(x, y, s, Npx);
                    if (dot(L, VNR) >= p.costheta_cutoff)
                    {
                        vec3f H = safeNormalize(L + VNR);

                        float wiDotN = max(dot(L, VNR), 0.0f);
                        float VNRDotH = max(dot(VNR, H), 0.0f);

                        float w = wiDotN * ndfGGX(alphaSqr, VNRDotH) * pixel_area(x, y, Npx) / 4.0f;
                        col += p.cubemap.fetch3(x, y, s) * w;
                        wsum += w;
                    }
                }
            }
        }
    }

    p.out.store(p.out._nhwcIndex(pz, py, px, 0), col.x);
    p.out.store(p.out._nhwcIndex(pz, py, px, 1), col.y);
    p.out.store(p.out._nhwcIndex(pz, py, px, 2), col.z);
    p.out.store(p.out._nhwcIndex(pz, py, px, 3), wsum);
}

__global__ void SpecularCubemapBwdKernel(SpecularCubemapKernelParams p)
{
    // Calculate pixel position.
    int px = blockIdx.x * blockDim.x + threadIdx.x;
    int py = blockIdx.y * blockDim.y + threadIdx.y;
    int pz = blockIdx.z;
    if (px >= p.gridSize.x || py >= p.gridSize.y || pz >= p.gridSize.z)
        return;

    int Npx = p.cubemap.dims[1];
    vec3f VNR = cube_to_dir(px, py, pz, Npx);

    vec3f grad = p.out.fetch3(px, py, pz);

    float alpha = p.roughness * p.roughness;
    float alphaSqr = alpha * alpha;

    vec3f col(0);
    for (int s = 0; s < p.cubemap.dims[0]; ++s)
    {
        int xmin, xmax, ymin, ymax;
        xmin = (int)p.bounds.fetch(p.bounds._nhwcIndex(pz, py, px, s * 4 + 0));
        xmax = (int)p.bounds.fetch(p.bounds._nhwcIndex(pz, py, px, s * 4 + 1));
        ymin = (int)p.bounds.fetch(p.bounds._nhwcIndex(pz, py, px, s * 4 + 2));
        ymax = (int)p.bounds.fetch(p.bounds._nhwcIndex(pz, py, px, s * 4 + 3));

        if (xmin <= xmax)
        {
            for (int y = ymin; y <= ymax; ++y)
            {
                for (int x = xmin; x <= xmax; ++x)
                {
                    vec3f L = cube_to_dir(x, y, s, Npx);
                    if (dot(L, VNR) >= p.costheta_cutoff)
                    {
                        vec3f H = safeNormalize(L + VNR);

                        float wiDotN = max(dot(L, VNR), 0.0f);
                        float VNRDotH = max(dot(VNR, H), 0.0f);

                        float w = wiDotN * ndfGGX(alphaSqr, VNRDotH) * pixel_area(x, y, Npx) / 4.0f;

                        atomicAdd((float*)p.cubemap.d_val + p.cubemap.nhwcIndexContinuous(s, y, x, 0), grad.x * w);
                        atomicAdd((float*)p.cubemap.d_val + p.cubemap.nhwcIndexContinuous(s, y, x, 1), grad.y * w);
                        atomicAdd((float*)p.cubemap.d_val + p.cubemap.nhwcIndexContinuous(s, y, x, 2), grad.z * w);
                    }
                }
            }
        }
    }
}