File size: 13,116 Bytes
2fe3da0
 
 
 
 
 
 
 
 
 
 
8f4e45e
2fe3da0
 
 
 
 
8185e57
 
 
2fe3da0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
# Copyright (c) 2022, NVIDIA CORPORATION & AFFILIATES.  All rights reserved.
#
# NVIDIA CORPORATION & AFFILIATES and its licensors retain all intellectual property
# and proprietary rights in and to this software, related documentation
# and any modifications thereto.  Any use, reproduction, disclosure or
# distribution of this software and related documentation without an express
# license agreement from NVIDIA CORPORATION & AFFILIATES is strictly prohibited.

import torch
import torch.nn.functional as F
import nvdiffrast.torch as dr
import os
from . import Renderer
from . import util
from . import renderutils as ru
_FG_LUT = None

os.environ["CUDA_HOME"] = "/usr/local/cuda"
os.environ["PATH"] += os.pathsep + os.path.join(os.environ["CUDA_HOME"], "bin")
os.environ["LD_LIBRARY_PATH"] = os.environ.get("LD_LIBRARY_PATH", "") + os.pathsep + os.path.join(os.environ["CUDA_HOME"], "lib64")
def interpolate(attr, rast, attr_idx, rast_db=None):
    return dr.interpolate(
        attr.contiguous(), rast, attr_idx, rast_db=rast_db,
        diff_attrs=None if rast_db is None else 'all')


def xfm_points(points, matrix, use_python=True):
    '''Transform points.
    Args:
        points: Tensor containing 3D points with shape [minibatch_size, num_vertices, 3] or [1, num_vertices, 3]
        matrix: A 4x4 transform matrix with shape [minibatch_size, 4, 4]
        use_python: Use PyTorch's torch.matmul (for validation)
    Returns:
        Transformed points in homogeneous 4D with shape [minibatch_size, num_vertices, 4].
    '''
    out = torch.matmul(torch.nn.functional.pad(points, pad=(0, 1), mode='constant', value=1.0), torch.transpose(matrix, 1, 2))
    if torch.is_anomaly_enabled():
        assert torch.all(torch.isfinite(out)), "Output of xfm_points contains inf or NaN"
    return out


def dot(x, y):
    return torch.sum(x * y, -1, keepdim=True)


def compute_vertex_normal(v_pos, t_pos_idx):
    i0 = t_pos_idx[:, 0]
    i1 = t_pos_idx[:, 1]
    i2 = t_pos_idx[:, 2]

    v0 = v_pos[i0, :]
    v1 = v_pos[i1, :]
    v2 = v_pos[i2, :]

    face_normals = torch.cross(v1 - v0, v2 - v0)

    # Splat face normals to vertices
    v_nrm = torch.zeros_like(v_pos)
    v_nrm.scatter_add_(0, i0[:, None].repeat(1, 3), face_normals)
    v_nrm.scatter_add_(0, i1[:, None].repeat(1, 3), face_normals)
    v_nrm.scatter_add_(0, i2[:, None].repeat(1, 3), face_normals)

    # Normalize, replace zero (degenerated) normals with some default value
    v_nrm = torch.where(
        dot(v_nrm, v_nrm) > 1e-20, v_nrm, torch.as_tensor([0.0, 0.0, 1.0]).to(v_nrm)
    )
    v_nrm = F.normalize(v_nrm, dim=1)
    assert torch.all(torch.isfinite(v_nrm))

    return v_nrm


class NeuralRender(Renderer):
    def __init__(self, device='cuda', camera_model=None):
        super(NeuralRender, self).__init__()
        self.device = device
        self.ctx = dr.RasterizeCudaContext(device=device)
        self.projection_mtx = None
        self.camera = camera_model
        
    # ==============================================================================================
    #  pixel shader
    # ==============================================================================================
    # def shade(
    #         self,
    #         gb_pos,
    #         gb_geometric_normal,
    #         gb_normal,
    #         gb_tangent,
    #         gb_texc,
    #         gb_texc_deriv,
    #         view_pos,
    #     ):
        
    #     ################################################################################
    #     # Texture lookups
    #     ################################################################################
    #     breakpoint()
    #     # Separate kd into alpha and color, default alpha = 1
    #     alpha = kd[..., 3:4] if kd.shape[-1] == 4 else torch.ones_like(kd[..., 0:1]) 
    #     kd = kd[..., 0:3]

    #     ################################################################################
    #     # Normal perturbation & normal bend
    #     ################################################################################
  
    #     perturbed_nrm = None

    #     gb_normal = ru.prepare_shading_normal(gb_pos, view_pos, perturbed_nrm, gb_normal, gb_tangent, gb_geometric_normal, two_sided_shading=True, opengl=True)

    #     ################################################################################
    #     # Evaluate BSDF
    #     ################################################################################

    #     assert 'bsdf' in material or bsdf is not None, "Material must specify a BSDF type"
    #     bsdf = material['bsdf'] if bsdf is None else bsdf
    #     if bsdf == 'pbr':
    #         if isinstance(lgt, light.EnvironmentLight):
    #             shaded_col = lgt.shade(gb_pos, gb_normal, kd, ks, view_pos, specular=True)
    #         else:
    #             assert False, "Invalid light type"
    #     elif bsdf == 'diffuse':
    #         if isinstance(lgt, light.EnvironmentLight):
    #             shaded_col = lgt.shade(gb_pos, gb_normal, kd, ks, view_pos, specular=False)
    #         else:
    #             assert False, "Invalid light type"
    #     elif bsdf == 'normal':
    #         shaded_col = (gb_normal + 1.0)*0.5
    #     elif bsdf == 'tangent':
    #         shaded_col = (gb_tangent + 1.0)*0.5
    #     elif bsdf == 'kd':
    #         shaded_col = kd
    #     elif bsdf == 'ks':
    #         shaded_col = ks
    #     else:
    #         assert False, "Invalid BSDF '%s'" % bsdf
        
    #     # Return multiple buffers
    #     buffers = {
    #         'shaded'    : torch.cat((shaded_col, alpha), dim=-1),
    #         'kd_grad'   : torch.cat((kd_grad, alpha), dim=-1),
    #         'occlusion' : torch.cat((ks[..., :1], alpha), dim=-1)
    #     }
    #     return buffers
        
    # ==============================================================================================
    #  Render a depth slice of the mesh (scene), some limitations:
    #  - Single mesh
    #  - Single light
    #  - Single material
    # ==============================================================================================
    def render_layer(
            self,
            rast,
            rast_deriv,
            mesh,
            view_pos,
            resolution,
            spp,
            msaa
        ):
 
        # Scale down to shading resolution when MSAA is enabled, otherwise shade at full resolution
        rast_out_s = rast
        rast_out_deriv_s = rast_deriv

        ################################################################################
        # Interpolate attributes
        ################################################################################

        # Interpolate world space position
        gb_pos, _ = interpolate(mesh.v_pos[None, ...], rast_out_s, mesh.t_pos_idx.int())

        # Compute geometric normals. We need those because of bent normals trick (for bump mapping)
        v0 = mesh.v_pos[mesh.t_pos_idx[:, 0], :]
        v1 = mesh.v_pos[mesh.t_pos_idx[:, 1], :]
        v2 = mesh.v_pos[mesh.t_pos_idx[:, 2], :]
        face_normals = util.safe_normalize(torch.cross(v1 - v0, v2 - v0))
        face_normal_indices = (torch.arange(0, face_normals.shape[0], dtype=torch.int64, device='cuda')[:, None]).repeat(1, 3)
        gb_geometric_normal, _ = interpolate(face_normals[None, ...], rast_out_s, face_normal_indices.int())

        # Compute tangent space
        assert mesh.v_nrm is not None and mesh.v_tng is not None
        gb_normal, _ = interpolate(mesh.v_nrm[None, ...], rast_out_s, mesh.t_nrm_idx.int())
        gb_tangent, _ = interpolate(mesh.v_tng[None, ...], rast_out_s, mesh.t_tng_idx.int()) # Interpolate tangents

        # Texture coordinate
        # assert mesh.v_tex is not None
        # gb_texc, gb_texc_deriv = interpolate(mesh.v_tex[None, ...], rast_out_s, mesh.t_tex_idx.int(), rast_db=rast_out_deriv_s)
        perturbed_nrm = None
        gb_normal = ru.prepare_shading_normal(gb_pos, view_pos[:,None,None,:], perturbed_nrm, gb_normal, gb_tangent, gb_geometric_normal, two_sided_shading=True, opengl=True)

        return gb_pos, gb_normal

    def render_mesh(
            self,
            mesh_v_pos_bxnx3,
            mesh_t_pos_idx_fx3,
            mesh,
            camera_mv_bx4x4,
            camera_pos,
            mesh_v_feat_bxnxd,
            resolution=256,
            spp=1,
            device='cuda',
            hierarchical_mask=False
    ):
        assert not hierarchical_mask
        
        mtx_in = torch.tensor(camera_mv_bx4x4, dtype=torch.float32, device=device) if not torch.is_tensor(camera_mv_bx4x4) else camera_mv_bx4x4
        v_pos = xfm_points(mesh_v_pos_bxnx3, mtx_in)  # Rotate it to camera coordinates
        v_pos_clip = self.camera.project(v_pos)  # Projection in the camera
  
        # view_pos = torch.linalg.inv(mtx_in)[:, :3, 3]
        view_pos = camera_pos
        v_nrm = mesh.v_nrm  #compute_vertex_normal(mesh_v_pos_bxnx3[0], mesh_t_pos_idx_fx3.long())  # vertex normals in world coordinates

        # Render the image,
        # Here we only return the feature (3D location) at each pixel, which will be used as the input for neural render
        num_layers = 1
        mask_pyramid = None
        assert mesh_t_pos_idx_fx3.shape[0] > 0  # Make sure we have shapes

        mesh_v_feat_bxnxd = torch.cat([mesh_v_feat_bxnxd.repeat(v_pos.shape[0], 1, 1), v_pos], dim=-1)  # Concatenate the pos [org_pos, clip space pose for rasterization]
        
        layers = []
        with dr.DepthPeeler(self.ctx, v_pos_clip, mesh.t_pos_idx.int(), [resolution * spp, resolution * spp]) as peeler:
            for _ in range(num_layers):
                rast, db = peeler.rasterize_next_layer()
                gb_pos, gb_normal = self.render_layer(rast, db, mesh, view_pos, resolution, spp, msaa=False)

        with dr.DepthPeeler(self.ctx, v_pos_clip, mesh_t_pos_idx_fx3, [resolution * spp, resolution * spp]) as peeler:
            for _ in range(num_layers):
                rast, db = peeler.rasterize_next_layer()
                gb_feat, _ = interpolate(mesh_v_feat_bxnxd, rast, mesh_t_pos_idx_fx3)
 
        hard_mask = torch.clamp(rast[..., -1:], 0, 1)
        antialias_mask = dr.antialias(
            hard_mask.clone().contiguous(), rast, v_pos_clip,
            mesh_t_pos_idx_fx3)

        depth = gb_feat[..., -2:-1]
        ori_mesh_feature = gb_feat[..., :-4]

        normal, _ = interpolate(v_nrm[None, ...], rast, mesh_t_pos_idx_fx3)
        normal = dr.antialias(normal.clone().contiguous(), rast, v_pos_clip, mesh_t_pos_idx_fx3)
        # normal = F.normalize(normal, dim=-1)
        # normal = torch.lerp(torch.zeros_like(normal), (normal + 1.0) / 2.0, hard_mask.float())      # black background
        return ori_mesh_feature, antialias_mask, hard_mask, rast, v_pos_clip, mask_pyramid, depth, normal, gb_normal
    
    def render_mesh_light(
            self,
            mesh_v_pos_bxnx3,
            mesh_t_pos_idx_fx3,
            mesh,
            camera_mv_bx4x4,
            mesh_v_feat_bxnxd,
            resolution=256,
            spp=1,
            device='cuda',
            hierarchical_mask=False
    ):
        assert not hierarchical_mask
        
        mtx_in = torch.tensor(camera_mv_bx4x4, dtype=torch.float32, device=device) if not torch.is_tensor(camera_mv_bx4x4) else camera_mv_bx4x4
        v_pos = xfm_points(mesh_v_pos_bxnx3, mtx_in)  # Rotate it to camera coordinates
        v_pos_clip = self.camera.project(v_pos)  # Projection in the camera
       
        v_nrm = compute_vertex_normal(mesh_v_pos_bxnx3[0], mesh_t_pos_idx_fx3.long())  # vertex normals in world coordinates

        # Render the image,
        # Here we only return the feature (3D location) at each pixel, which will be used as the input for neural render
        num_layers = 1
        mask_pyramid = None
        assert mesh_t_pos_idx_fx3.shape[0] > 0  # Make sure we have shapes
        mesh_v_feat_bxnxd = torch.cat([mesh_v_feat_bxnxd.repeat(v_pos.shape[0], 1, 1), v_pos], dim=-1)  # Concatenate the pos

        with dr.DepthPeeler(self.ctx, v_pos_clip, mesh_t_pos_idx_fx3, [resolution * spp, resolution * spp]) as peeler:
            for _ in range(num_layers):
                rast, db = peeler.rasterize_next_layer()
                gb_feat, _ = interpolate(mesh_v_feat_bxnxd, rast, mesh_t_pos_idx_fx3)

        hard_mask = torch.clamp(rast[..., -1:], 0, 1)
        antialias_mask = dr.antialias(
            hard_mask.clone().contiguous(), rast, v_pos_clip,
            mesh_t_pos_idx_fx3)

        depth = gb_feat[..., -2:-1]
        ori_mesh_feature = gb_feat[..., :-4]

        normal, _ = interpolate(v_nrm[None, ...], rast, mesh_t_pos_idx_fx3)
        normal = dr.antialias(normal.clone().contiguous(), rast, v_pos_clip, mesh_t_pos_idx_fx3)
        normal = F.normalize(normal, dim=-1)
        normal = torch.lerp(torch.zeros_like(normal), (normal + 1.0) / 2.0, hard_mask.float())      # black background

        return ori_mesh_feature, antialias_mask, hard_mask, rast, v_pos_clip, mask_pyramid, depth, normal